Предварительные усилители, или как их еще принято называть — предусилители, предназначены для усиления напряжения звуковой частоты перед подачей его на управляющие сетки ламп выходного каскада усилителя. Их еще называют усилители на сопротивлениях, так как в большинстве случаев, роль нагрузки в них выполняют сопротивления. Такие усилители имеют достаточно равномерную амплитудно — частотную характеристику во всем звуковом диапазоне. Усилители, выполненные с применением пентодов имеют значительно более высокий коэффициент усиления. Пентоды применяются там где необходимо получить высокое усиление при минимальном количестве ламп.

 

Поиск данных по Вашему запросу:
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Усилитель на СV181 E34L

История изобретения

В 1906—1908 годах Ли де Форест изобрёл первую усилительную лампу — триод[6]. Ошибочно полагая, что проводимость триода обусловлена ионным током газового разряда, изобретатель не пытался создать в баллоне своей лампы глубокий вакуум. Напротив, обнаружив, что его примитивный ртутный вакуумный насос загрязняет баллон парами ртути, Де Форест переключился на эксперименты с ртутными лампами. Австриец Роберт фон Либен разработал свою конструкцию ртутного триода с оксидным катодом, и в 1913 году довёл мощность триодного радиопередатчика до 12 Вт на волне 600 м. В том же 1913 году патент де Фореста приобрела AT&T. Работавший на корпорацию Харолд Арнолд понял, что для стабильной работы «повторителя» де Фореста необходим высокий вакуум, и в течение года довёл до серийного производства первый практический вакуумный триод — повторитель для телефонных линий.

Чайлд (1911), Ленгмюр (1913) и Шоттки (1914) разработали модель пространственного заряда — математический аппарат, описывающий поведение вакуумных ламп. Из теории следовал подтверждённый практикой вывод о том, что предельная частота усиления fпр триодного усилителя ограничена влиянием его проходной ёмкости Cac:

 

fпр ~ S/Cac,

где S — крутизна сеточно-анодной характеристики.

Лампами называют такие вакуумные электронные приборы, действие которых основывается на управлении потоком электронов только с помощью анода или анода и сеток. Вакуумные электронные лампы предназначены для генерирования и обработки электрических сигналов, в частности их усиления, модуляции, детектирования, преобразования частоты, выпрямления и тому подобное. Они превращают энергию источников питания в энергию выходных сигналов с помощью управления электронным потоком.

Триод оказался пригоден только для работы на звуковых частотах, длинных и средних радиоволнах. Для выхода в коротковолновой диапазон следовало радикально снизить проходную ёмкость лампы. В 1926 году Альберт Халл решил проблему, поставив между управляющей сеткой и анодом триода дополнительную экранирующую сетку. Генри Раунд (англ.)русск., работавший на Marconi (англ.)русск., первым довёл идею Халла до серийного выпуска, и в 1927 году на рынок вышли радиочастотные тетроды с проходной ёмкостью не более 0.025 пФ.

 


Радиолампа.

Независимо от Халла и Раунда над многоэлектронными лампами работала группа физической лаборатории Philips (нид.)русск. под началом Жиля Хольста (нид.)русск.. В отличие от американцев, голландцев интересовали не радиочастоты, а качественное воспроизведение звуковых частот[14] и улучшение экономичности ламп. Тетрод, от природы нелинейный из-за неустранимогодинатронного эффекта, был мало пригоден для этой задачи. Для того, чтобы подавить динатронный эффект, Бернард Теллеген поместил между экранирующей сеткой третью сетку, электрически соединённую с катодом. Эта сетка была относительно редкая и практически не влияла на первичный поток электронов от катода к аноду, но эффективно блокировала ток вторичных электронов от анода к экранирующей сетке. Раунд пришёл к той же идее в том же 1926 году, но первенство уже принадлежало Теллегену, а патент на изобретение — Philips.

Philips лицензировал производство пентодов по всему миру и вступил в стратегическое партнёрство с Bell Labs. В 1931 году серийный выпуск низкочастотных пентодов начали RCA в США и KO Vacuum Tube в Японии. В 1932 году RCA выпустила первые радиочастотные пентоды тип 57 и тип 58. Уже в начале 1932 в США массово публиковались любительские конструкции на пентодах. EMI (Великобритания) не пожелала покупать патент Теллегена, считавшийся одной из самых ценных разработок Philips, и взамен создала альтернативу пентоду — лучевой тетрод. Развитие мощных ламп разделилось на две ветви — лучевой тетрод в США и Великобритании, пентод в континентальной Европе.

Схожесть электрических свойств лучевых тетродов и мощных усилительных пентодов привела к смешению этих терминов в литературе. Одна и та же лампа может именоваться и лучевым тетродом, и пентодом — несмотря на принципиальные разницы во внутреннем устройстве этих типов ламп. Так, в справочнике Кацнельсона и Ларионова 1968 года лучевой тетрод 6П1П назван пентодом, при том, что на прилагаемом рисунке показываются несвойственные пентоду лучеобразующие пластины. В справочнике Госэнергоиздата 1955 года 6П1П названа лучевым тетродом. То же происходило и в англоязычной литературе: комбинированная лампа PCL82 (советский аналог — 6Ф3П в технической документации Thorn-EMI классифицируется как «триод — лучевой тетрод», в документации Mullard как «триод — пентод».


Что такое пентод

Пик инноваций в электровакуумной технике пришёлся на 1934 год — в этом году производители выбросили на рынок максимальное количество новых разработок[8], в том числе первые радиочастотные пентоды-жёлуди тип 954 и тип 956. Наметился переход стационарной аппаратуры с напряжений накала 2.5 В и 4 В на напряжение 6.3 В[28][29]. Продолжилось и развитие многоэлектродных и комбинированных ламп — RCA вывело на рынок гептод (пентагрид), Telefunken выпустил октод и триод-гексод[28].

В послевоенные годы пентоды развивались эволюционно. В 1950—1952 начался переход от октальных ламп к миниатюрным «пальчиковым» лампам с девятью штырьками[30][31]. В 1953 они стали стандартом НАТО, к 1958 году практически вся номенклатура массовых приёмно-усилительных ламп была выпущена в новом конструктиве,к 1960 доля металлических ламп с октальным цоколем в СССР снизилась до 20 % от общего выпуска[32]. Новые разработки оптимизировались на достижение максимального КПД, иногда в ущерб линейности (пример — EL84 (англ.)русск., проигрывавший в линейности своим предшественникам).

Последнее поколение радиоламп, сверхминиатюрные нувисторы, было выпущено RCA в 1960 году[34], но не нашло массового применения за пределами ВПК. В американской нувисторной серии пентодов не было, а в СССР был выпущен пентод-нувистор 6Ж54Н. Был разработан в СССР и свой, уникальный[36] класс ламп — сверхминиатюрные стержневые лампы конструкции В. Н. Авдеева, в которых вместо традиционных витых сеток использовались жёсткие стержни, ориентированные вдоль катодов.

 

Устройство тетрода и его условное обозначение

 

Введение. Окончание части 1. Еще одно важное условие выстрела телеграфа Морзе.

Но массовый выстрел телеграфа, да еще и мобильных его решений по типу рации на танке или еще в каком рюкзаке, требовал еще одного важного изобретения. И его создал Иоганн Филипп Рейс — школьный учитель и по совместительству физик-изобретатель. Мой источник умалчивает какой предмет он преподавал, видимо музыку… (о причинах этого предположения буквально парой строчек ниже)

25-го октября 1861 года Рейс продемонстрировал устройство, которое явилось последствием изучения им строения уха человеческого и назвал его Telephon. Его на одной из выставок в 1872-м году увидел Томас Эдисон. Конструкция представляла собой настольный наушник, батарею и микрофон по типу конденсаторного, в котором звуковые волны вызывали колебание пластины меняющей электроемкость, что приводило к возникновению напряжения в проводах длиной до 100 метров, которое и раскачивало наушник. В честь этой штуковины до сих пор наушники то и дело именуют головными телефонами. А этот был настольный.

По свидетельству присутствовавших на выставке профессоров, они смогли услышать несколько фраз, а также все музыкальные тона неуточненного произведения.

Устройство и характеристики пентодов.

Второй путь создания между экранирующей сеткой и анодом минимума потенциала заключается в помещении между ними дополнительной сетки, на которую подается нулевой или близкий к нулю потенциал. Эта третья сетка, называемая защитной или антидинатронной, превращает лампу в пентод. Наличие защитной сетки полностью устраняет влияние динатронного эффекта на характеристики лампы. Присутствие третьей сетки еще больше повышает внутреннее сопротивление и коэффициент усиления лампы и уменьшает проходную ёмкость. Действующее напряжение пентода о определяется следующим выражением:

 

Будет интересно➡ Что такое тиратрон и где он применяется

Величина действующего напряжения записана для случая Uc3=0. Соотношение между проницаемость сеток обычно следующее:D213. Особенно густая сетка (соответственно малая проницаемостьD2) устанавливается в высокочастотных пентодах.

Материал по теме: Как подключить конденсатор

Так как экранирующая сетка значительно сильнее влияет на анодный ток, чем анод, положение анодно-сеточной характеристики тетродов и пентодов зависит в основном отUc2. Анодно-сеточные характеристики тетрода или пентода, снятые при различных напряжениях на аноде, будут близко лежать друг возле друга и веерообразно расходится, в отличие от аналогичных характеристик триода, которые при изменении Ua остаются параллельными. Причина этого в том, что увеличение Ua вызывает увеличение коэффициента токораспределенияk=Ja/Jc2. Кроме того, увеличение анодного тока в тетроде происходит так же за счет вторичной эмиссии с экранирующей сетки. Важное значение имеет тот факт, что в тетродах и пентодах анодно-сеточная характеристика расположена левее, чем в триодах, при том же Ua.


Лампы пентоды

 

Технические характеристики

Для пентодов так же как и для тетродов, основными характеристиками, используемыми для определения их параметров и характеристических расчетов, являются анодные Ja=f(Ua) при различных величинахUc1и фиксированном напряжении экранирующей сеткиUc2. К анодным характеристикам пентода предъявляются следующие требования, вытекающие из условий получения наибольшей полезной мощности при неискажённом усилении. Во-первых, для неискаженного усиления необходимо, чтобы кривые Ja=f(Ua) были в своих пологих(рабочих) участках параллельны и эквидистантны, т.е. отстояли друг от друга на одинаковое расстояние при одинаковом ΔUc. Во-вторых, анодные характеристики пентода должны переходить из своего начального крутого участка в пологие рабочие участки при возможно меньшем значенииUа.

Это необходимо для того, чтобы получить большее усиление напряжения и мощности полезного сигнала. Следует отметить, что пологие участки анодных характеристик пентода соответствуют не режиму насыщения, а режиму пространственного заряда, хотя внешний вид кривых Jа=f(Ua) и напоминает переход в режим насыщения. Малый наклон этих участков объясняется очень малым влиянием анодного напряжения в пентоде на анодный ток режиме прямого перехвата. Крутой же участок характеристик определяется резким изменением токораспределения между анодом и экранирующей сеткой.

При произвольно взятом нагрузочном сопротивлении из-за неэквидистантности реальных анодных характеристик могут появиться искажения усиливаемого сигнала, чем пентод в невыгодную сторону отличается от триода. Оптимальное сопротивление нагрузки пентода лежит обычно в пределах 1/8-1/10 внутреннего сопротивления на рабочем участке. Статические параметры тетродов и пентодов те же, что и триодов: крутизнаS=ðJa/ðUc1,внутреннее сопротивлениеRi=ðUa/ðJaи коэффициент усиления μ=dUa/dUc1приJa=const. Зависимость статических параметров одного из пентодов от анодного напряжения приведены на рис.3.9. Зависимость параметров пентода отUc1похожа на аналогичную зависимость параметров триода от напряжения управляющей сетки.


Пентод

Виды конструкций

Варьируя конструкцию и размеры электродов пентода, можно получить лампы с самый разнообразными характеристиками и параметрами, благодаря чему пентод является самой распространённой лампой универсального назначения. Отметим основные особенности различных классов пентодов: высокочастотных, низкочастотных и широкополосных.

В пентодах, предназначенных для усиления высоких частот, должно быть осуществлено хорошее экранирование управлявшей сетки от анода. С этой целью экранирующую сетку делают густой и в лампе помещают специальные экраны для уменьшения ёмкости между выводами анода и управляющей сетки. Благодаря этому проходная ёмкость высокочастотных пентодов может быть уменьшена до величины порядка 0.003-0.006 пф.

У высокочастотных пентодов, предназначенных для работы в схемах с автоматической регулировкой усиления, управляющая сетка изготавливается с различной густотой намотки (т.е. различной проницаемостью) по её длине. Это приводит к тому, что в анодно-сеточной характеристике такой лампы имеются два участка с различной крутизной и коэффициентом усиления (пентоды с переменной крутизной или удлинённой характеристикой).

Крутизна высокочастотных пентодов лежит в пределах 2-10мА/В. Внутреннее сопротивление достигает нескольких мегом, а коэффициент усиления μ – 5000 и более. Анодные характеристики высокочастотных пентодов в рабочей части идут очень полого, почти параллельноUa.

 

Низкочастотные пентоды отличаются от высокочастотных более простой конструкцией электродов. Экранирующая сетка делается не такой густой, коэффициент усиления имеет величину от 150 до 600, а внутреннее сопротивление 20-100кОм, крутизна достигает 9-12мА/В в мощных оконечных пентодах. Для получения более левой анодно-сеточной характеристики на экранирующую сетку подают высокое напряжение: (0.75-1)Uа. Использование пентодов в выходных каскадах усилителей низкой частоты выгоднее, чем триодов, потому что пентоды требуют для «раскачки» меньшего напряжения, чем триоды. Коэффициент полезного действия усилителя мощности на пентоде выше, чем на триоде, но качество усиления вследствие искажений хуже.

Широкополосные пентоды, предназначенные для усиления в полосе частот несколько мегагерц или даже несколько десятков мегагерц, должны иметь большую крутизну и малые входную и выходные ёмкости. Необходимые параметры в широкополосных пентодах достигаются, в основном, за счет повышении крутизны до 25-35мА/В. Увеличение крутизны осуществляется за счёт уменьшения расстояния сетка-катод (до 40-50мкм), улучшения токораспределения, для чего экранирующая сетка изготавливается не слишком густой и из проволоки малого диаметра.

Измерительная схема собирается согласно рис.3.10 и цоколёвки исследуемой лампы. В работе изучаются характеристики пентода, имеющего отдельный вывод третьей сетки. Это позволяет использовать его как и в пентодном, так и в тетродном включении. В пентодном включении лампы третья сетка с помощью проводника, на схеме не показанного, соединяется с катодом, в тетродном включении – со второй сеткой.

Будет интересно➡ Как устроен магнетрон: принцип работы и применение в микроволновой печи

Для исследования лучевого тетрода необходимо учесть изменение цоколёвки лампы и установить пределы измерительных приборов согласно ожидаемым токам и напряжениям в цепях анода и сеток. Поэтому предварительно следует ознакомится со всеми пунктами задания и паспортными данными используемых ламп. Подогреватели катодов исследуемых ламп питаются от источника переменного напряжения 6.3В. Анодное питание и питание экранирующей сетки осуществляется от различных источников питания для исключения взаимного влияния регулировок в этих цепях. Для изменения полярности потенциала управляющей сетки используется переключатель П.

Интересно по теме: Как проверить стабилитрон.

В процессе всех измерений необходимо следить за постоянством заданных напряжении на электродах лампы, регулируя их потенциометрами. При определении крутизны и внутреннего сопротивления изучаемых ламп воспользоваться методикой, описанной в работе № 2 для триода. Коэффициент усиления определять по формуле: μ=SRi.

При значительных отрицательных напряжениях на управляющей сетке, что характерно для приема сильных сигналов, густые участки управляющей сетки запираются. В результате поток электронов от катода к аноду проходит только на том участке, где управляющая сетка более редкая. При этом изменение напряжения на сетке слабо влияет на изменение анодного тока, соответственно крутизна характеристики и коэффициент усиления уменьшаются.

На рис. 2.26, б изображены два семейства анодных характеристик пентода с переменной крутизной, снятые при различных напряжениях на экранирующей сетке. Нетрудно заметить, что основными особенностями этих характеристик являются их левое расположение, резкая зависимость характеристик от экранного напряжения и растянутый нижний участок. Малое расстояние между двумя характеристиками семейства свидетельствует о большом коэффициенте усиления. Помимо этого характеристики не параллельны, то есть параметры лампы не постоянны, а зависят от режима питания.

 


Ламповый усилитель.

Применение пентодов

Пентоды условно можно разделить на несколько групп: приемноусилительные и генераторные пентоды. В свою очередь, приемноусилительные пентоды делятся на низкочастотные и высокочастотные. Среди высокочастотных пентодов особо следует отметить широкополосные лампы. Низкочастотные приемноусилительные пентоды получили широкое распространение в усилителях мощности низкой частоты, где применяются в предварительных и оконечных каскадах. Такие пентоды работают при больших амплитудах сигналов.

Поэтому для получения левой характеристики, не обходимой для работы без сеточных токов, управляющая сетка делается редкой, а напряжение на экранирующей сетке равно анодному. При этом экранирующую сетку также делают редкой, чтобы ток экранирующей сетки не был слишком большим. Для обеспечения достаточно большой выходной мощности низкочастотные пентоды должны надежно работать при больших токах, поэтому их электроды должны рассеивать значительные мощности. Низкочастотные пентоды конструктивно отличаются от высокочастотных отсутствием добавочных экранов, поскольку вредное влияние междуэлектродной емкости на низких частотах незначительно.


Работа ламповых усилителей

Режим перехвата

При достаточно больших анодных напряжениях (не менее 10 … 50 % Uc2 в зависимости от типа ламп) часть электронов, эмитированных катодом (обычно 1/5 — 1/6 от IK), перехватывается экранирующей сеткой «на лету», формируя ток экранаIc2. Не перехваченные экраном электроны продолжают движение к аноду и формируют его ток Ia. Доля анодного тока в токе катода и коэффициент распределения Ia/Ic2 (обычно равный 4…5) медленно растут по мере роста отношения Ua/Uc2. Важно именно соотношение двух напряжений, а не их абсолютные значения. Например, в триодном включении пентода Ua точно равно Uc2, поэтому соотношение Ia/Ic2 постоянно практически во всей рабочей области. При фиксированном Uc2 зависимость Ia от Ua близка к линейной, что эквивалентно практически постоянному, и при этом весьма высокому внутреннему сопротивлению. Чем слабее зависимость токораспределения от Ua/Uc2, тем выше внутреннее сопротивление. Крутизна управления по первой сетке в режиме перехвата зависит от Ua очень слабо: её определяют в первую очередь UC1 и Uc2 .

Режим возврата

При снижении анодного напряжения до порога в 10 … 50 % Uc2 часть электронов, ранее достигавших анода, оказывается не в состоянии преодолеть его тормозящее поле (Ua << Uc2!), которое отбрасывает их назад на экранирующую сетку. На анодной ВАХ возникает перелом. С дальнейшим снижением Ua ток анода резко падает, а ток экрана так же резко растёт. В предельном случае, когда Ua опускается до нуля, весь ток катода замыкается на экранирующую сетку. Нелинейность и нестабильность параметров в режиме возврата запретительно велики, поэтому рабочая точка пентода выбирается так, чтобы при всех возможных мгновенных значениях Ua лампа оставалась бы в режиме перехвата.

Так же как и в тетроде, бомбардировка анода электронами c энергией более 10…15 эВ порождает вторичную эмиссию с анода. Втетроде в режиме возврата вторичные электроны беспрепятственно движутся к экранирующей сетке, уменьшая ток анода. В ранних тетродах ток анода мог даже менять направление (обратный ток вторичных электронов превосходил прямой ток). В пентоде на пути от анода к экрану поставлено препятствие — третья сетка. Она не способна задержать быстрые первичные электроны, но эффективно препятствует обратному току медленных вторичных электронов. Свойственный тетродам динатронный эффект в пентодах подавлен: с ростом Ua вольт-амперные характеристики пентодов возрастают монотонно.


Три одинаковых пентода

 

Ведение. Большое и длинное. Часть 1. Начало.

Эмили Дикиносон конечно молодец в плане и наблюдательности и попыток мотивации мужчин к движению. Для ее времени, когда всеми делами рулит мужчина, а женщина, имея свои скромные хотелки про прогресс, может только методами правильно подобранных уговоров мужа цели достичь. Но мы сейчас все таки посмотрим на мужчин чуть более подробно и внимательно!

Есть за ними такое интересное свойство как наваливать! И делают они это порой весьма хорошо! Особенно если вдруг им на пятки конкурент наступает! Причем именно в такой последовательности — не впереди мешается, а именно на пятки наступает. Вот тогда-то мужчина валит! И валит раза в 3-4 сильнее, чем валил бы в условиях отсутствия конкуренции!

Правда это работает не на всех мужчинах. Есть мужчины, которые наоборот максимально эффективны в условиях, когда их если и отвлекают от дел то только фразой «кушать подано», а есть, те кто наваливать-то наваливает и конкурентов побеждает, да вот таргетировался не в раздел под названием «статья полезная большая и умная» а в раздел комментарии, и валит там методом именуемым «мандариновый сок развели».

В связи с данной спецификой мужского поведения в мире реализуется технология 4х-тактного форсирования прогресса. Суть ее в том, что формируются три системы со схожим функционалом и вполне удобные в эксплуатации, одна из которых — аутсайдер, но нет-нет, да и наступит на пятки бегущим впереди двум, и еще одна система которая не удобна для человека, но по каким то странным обстоятельствам на новом витке прогресса лет через 10-15-60 после внедрения всей четверки именно она и выстреливает.

В дне современном данное явление можно наблюдать в баттлах смартфонов и особенно планшетов! Есть яблоко, есть андроид, которые между собой конкурируют а есть пятконаступатель в виде Windows Phone, так же на рынке есть полноценный Windows на базе Intel Atom, который по части удобства интерфейса, настроек, управления, гибкости программного обеспечения удобен только людям с характерным мышлением Ботаников до гранита науки, да и они нет нет а пару ласковых подберут!

Частотные свойства

На низких частотах (f <<� Fгр) коэффициент усиления пентода с активной анодной нагрузкой определяется крутизной лампы S и сопротивлением нагрузки Rн:

K = SRн

Та же формула применима и к реактивной нагрузке. При сопоставимых величинах сопротивления нагрузки и внутреннего сопротивления пентода Ra в формулу следует подставлять эквивалентное сопротивление генератора Rэкв = RaRн / (Ra + Rн). В области верхних частот пентод c активной нагрузкой характеризуется показателем коэффициента широкополосности (γ) — произведением частоты на коэффициент усиления, достижимый на этой частоте. Коэффициент широкополосности не зависит от активного сопротивления нагрузки, но убывает с ростом её ёмкостиСн:

 

γ = K Δf = S / (2π (Cвых + Свх + Сн)) [40].

Коэффициент широкополости массовых серий пентодов лежит в диапазоне от 50 до 200 МГц. Табличные значения коэффициента указываются либо для идеального случая Cн=0, либо для некоторого стандартного Cн. Для пальчиковых ламп принимается Cн=5.5 пФ, поэтому справочные значения коэффициента различаются несущественно. Для октальных ламп принимается Cн=10 пФ, поэтому их коэффициент широкополосности под нагрузкой примерно в полтора раза ниже «безнагрузочного» коэффициента.

Будет интересно➡ Устройство и применение кенотрона

Полезный материал: что такое полупроводниковый диод.

В пентодных усилителях без частотной коррекции коэффициент широкополосности должен превосходить верхнюю границу усиливаемых частот в 5…10 раз, в усилителях с частотной коррекцией — в 2.5…4 раза. Эта граница для самых совершенных цокольных пентодов не превышает 200 МГц. Замена активной нагрузки на узкополосный резонансный контур позволяет довести верхнюю рабочую частоту пентодов-желудей (1Ж1Ж) и отдельных пальчиковых ламп (6К1П) до 500 МГц. Дальнейшее повышение рабочей частоты одиночного каскада невозможно из-за неприемлемо высоких шумов пентодов.

Рабочую частотут широкополосного каскада можно повысить в разы, распараллелив каскад усиления и нагрузив его аноды на линию бегущей волны. Такой каскад с бегущей волной (иначе, каскад распределённого усиления) на n ламп имеет граничную частоту, в n раз превосходящую граничную частоту одиночного пентода. (в пределе до 1 ГГц). Число ламп в каскаде на практике было ограничено шестью-восемью. Ламповые каскады бегущей волны были дороги, требовали точной настройки, и потому были полностью вытеснены твердотельными усилителями СВЧ.

Вольт-амперные характеристики


Анодные вольт-амперные характеристики (ВАХ) маломощных пентодов близки к идеальным: резкий переход из режима возврата в режим перехвата происходит при относительно низких Ua; плоские «полки» ВАХ свидетельствуют о высоком выходном сопротивлении (6Ж32П — 2.5 МОм в номинальном режиме). Это позволяет строить на пентодах почти совершенные дифференциальные каскады и активные нагрузки (стабильные источники тока) В мощных пентодах выходное сопротивление относительно низкое, а переход в зону перехвата растянут. При малых анодных напряжениях и большом отрицательном смещении управляющей сетки наблюдается «тетродная» нелинейность полки ВАХ.

Качественный анализ ВАХ пентодов показывает, что

 

  • Выходное сопротивление пентода (в том числе мощного низкочастотного) на практике можно считать бесконечно большим[20].
  • Расчётный коэффициент усиления пентода по напряжению весьма велик (до 5000) — настолько, что его точное значение теряет практический смысл и редко нормируется производителем. Усиление каскада на НЧ определяется не этим коэффициентом, а произведением крутизны лампы на сопротивление нагрузки.
  • Мгновенное значения напряжения на аноде пентода может опускаться до значений, намного меньших, чем в триодном каскаде. Поэтому при равном напряжении питания размах напряжения на выходе пентода может быть больше, чем у триода. (но меньше чем у лучевого тетрода).
  • Спектр гармоник пентода содержит бо́льшую, чем в спектре триода, долю нечётных гармоник, и бо́льшую долю высших гармоник. В спектре гармоник триода доминирует вторая гармоника, а доля высших гармоник (шестой и выше) пренебрежительно мала.

Еще более подробное описание того что сделал Эдисон.

Я хочу чтобы все, и особенно инженеры, представили, что пришлось сделать Эдисону чтобы провести эксперимент, заранее зная, что из него ничего не выйдет! Дело в том, что если мы заранее знаем, что ничего не выйдет с кабелем, то, собственно, мы ничего особо не теряем на эксперименте и делать его не хотим. А тут все было гораздо горячее!

Эдисон ввел третий электрод в вакуумное пространство лампы, расположив его рядом с нитью накаливания. А ведь для этого эксперимента нужно было вручную изготовить из стекла колбу лампы, вставить в нее необходимые детали, откачать оттуда воздух, и запаять лампу. Ведь это сколько опасной работы с раскаленным стеклом. Много современных инженеров электронщиков даже реально прогрессивных, которые все четко и цепко мыслят раза по 2 в год, делая научные открытия, умеют нынче работать со стеклом? А он это сделал!

И не просто сделал — он это сделал, заранее из учебника зная, что ничего не получится! И между тем все равно сделал!

Сейчас я расскажу, что же он для нас аудиофилов сделал. Но прежде все таки задам вопрос: а не сбрендил ли он чтобы это сделать?

Нелинейные искажения

Ухо человека терпимо к чётным гармоникам, но весьма чувствительно к призвукам нечётных гармоник, которые преобладают в спектре искажений пентода[79]. Усилители мощности НЧ на пентодах могут достигнуть приемлемого уровня слышимых искажений только при весьма низком измеряемом КНИ, который достижим только при охвате усилителя глубокой отрицательной обратной связью (ООС)]. Усилители на триодах, напротив, обеспечивают приемлемое качество звучания без использования общей обратной связи. Лучевые тетроды занимают промежуточное положение: им также необходима ООС, но их спектр искажений ближе к триодному.

В современных ламповых УНЧ начального уровня широко используются пентоды послевоенной разработки EL34 (англ.)русск. и EL84 (англ.)русск. (аналог — 6П14П). Однако в качественных музыкальных УНЧ предпочтительны довоенные триоды прямого накала, в гитарных УНЧ — довоенные же лучевые тетроды. Последнее, вероятно, — следствие исторического разделения рынка на «европейские пентоды» и «американские лучевые тетроды». Мнение о лучшей линейности ламп довоенной разработки объясняется тем, что они были оптимизированы под низкие искажения — настолько низкие, насколько позволяла технология. «Усиление было дорого» (Morgan Jones), поэтому лампы и усилители тех лет проектировались так, чтобы дать приемлемый уровень искажений минимальным числом ламп без использования обратной связи. Да и сама теория обратной связи только-только создавалась.


Электронные лампы в заводской упаковке

Удешевление ламп в 1940-е годы изменило конструкторский подход: с использованием глубокой ООС линейность лампы отошла на второй план]. Поэтому, например, классический послевоенный пальчиковый пентод EL84 (6П14П) проигрывает по искажениям довоенному лучевому тетроду 6V6 (англ.)русск. (аналог — 6П6С), хотя и превосходит его по другим параметрам, в частности, крутизне характеристики, выходной мощности. Лампы локтальной серии (англ.)русск. 1940-х годов, за исключением триода 7AF7, весьма линейны — они имеют и «довоенную» конструкцию электродов, и все преимущества цельностеклянных ламп.

 

Материал по теме: Как подключить конденсатор

Пентоды и лучевые тетроды, предназначенные для работы в ключевом режиме, в число которых входят лампы для ЭВМ первого поколения (например, 6Ж22П), лампы для узлов строчной развёртки телевизоров (6П36С), выходные лампы для радиопередатчиков (ГУ-50) имеют высокий уровень нелинейных искажений. При разработке этих ламп ставились иные приоритеты. В цифровой технике линейность не играла никакой роли, в производстве телевизоров линейность развёртки настраивалась на конвейере индивидуально для каждого аппарата, а в радиопередатчиках применяется выходной колебательный контур, подавляющий излучение на гармониках. Несовершенство производства «строчных» ламп ранних серий порождало большой разброс коэффициента нелинейных искажений, поэтому отдельные лампы этих серий могут быть весьма линейными. С ростом культуры производства разброс параметров уменьшился — лампы позднейших «строчных» серий имеют стабильно высокие искажения.

От admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *