Фонокорректор RIAA-Paradise от «Три В»

Виниловый ренессанс не состоялся и, по видимому, уже не состоится никогда. Но ностальгия по LP сохранилась у довольно большой аудитории меломанов, причем в рядах их поклонников много и совсем молодых любителей музыки.

 

Не будем спорить, что лучше, цифра или аналог. Интерес к пластинкам есть, спрос на вертушки и аксессуары стабилен, а на фонокорректоры даже превышает предложение. Если же учесть, что среди виниловых людей необычайно высок процент самодельщиков, то выход из создавшейся ситуации напрашивается сам собой: нужно дать возможность всем желающим самостоятельно изготовить недорогой, но качественный корректор RIAA.

Лучшим вариантом, очевидно, будет не радиолюбительская схема, а конструкция, подготовленная к серийному производству, и таковая имеется. В 1994 году КБ «Три В» разработало предварительный ламповый усилитель Paradise, и по договорённости с было изготовлено 100 аппаратов. Чуть позже силами самого КБ еще 50 — для изучения потребительского спроса.

В 1996 году эта модель демонстрировалась на выставке «Российский Hi-End» и собрала немало положительных отзывов. В усилителе были предусмотрены обширные потребительские и функциональные возможности. Одной и, пожалуй, основной был встроенный RIAA-фонокорректор.

 

Однако бурное наступление CD поставило жирный крест на этом изделии, и выпуск Paradis’ов был прекращён. Против лома нет приема, и спорить с цифрой бессмысленно. При всех ее недостатках кое за что ей можно сказать спасибо: цифровые источники «подтянули» остальные звенья аудиотракта — усилители, акустику и кабели — на новый уровень. Была пересмотрена схемотехника, появилось скептическое отношение к ООС, начали обращать внимание на качество питания, спектр искажений и т.д. Возросший уровень компонентов (особенно АС) позволил отказаться от регулировки тембра, поэтому темброблоки и эквалайзеры благополучно канули в Лету.

Вместе с этим такой вид техники, как фонокорректоры, был совершенно забыт производителями. В наше КБ стали поступать заявки от любителей музыки на изготовление таких изделий, и количество их постоянно росло. Поэтому мы решили начать выпуск RIAA-корректоров, выделив их в самостоятельный блок.

Чтобы найти надежную, недорогую и хорошо звучащую схему, мы собрали более пяти экспериментальных образцов на базе Paradise, но с использованием различной элементной базы, в основном ламп, а также конденсаторов, резисторов, проводов и разъёмов.

Не стану подробно останавливаться на описании этих вариантов, просто перечислю схемотехнические решения.

 

  • Вариант 1. Первый каскад — триод 6С3П с резистивной нагрузкой в аноде, второй — SRPP на 6Н23П.
  • Вариант 2. Первый каскад — 1579 (6Н9С) в каскодном включении, второй — 6Н8С (разных заводов) с резистивной нагрузкой.
  • Вариант 3. Первый каскад — SRPP на 1579, второй — 6Н8С с резистивной нагрузкой.
  • Вариант 4. Все каскады SRPP на 12АТ7.
  • Вариант 5. Все каскады SRPP, но первая лампа 6Н2П (серый анод), вторая — 6Н1П.

Питание корректоров осуществлялось от блока питания на кенотроне 5Ц3С с П-фильтром. Использовались конденсаторы МБГО-20 мкФ х 400В, Др-2,5 Гн-0,1 А.

В результате многократных прослушиваний был сделан вывод, что все эти варианты имеют право на жизнь, хотя и звучат совершенно по-разному.

Мы остановились на исходном, с которого начинали эксперименты, с незначительными изменениями элементной базы. Мы заметили, что SRPP обладают более динамичным звучанием, чем каскады с резистивной нагрузкой.

Корректоры на лампах октальной серии звучат очень по-разному, и, по нашему мнению, первый каскад на пальчиковых лампах по схеме SRPP дает большую динамику и скорость. Кроме того, октальные лампы более дефицитны, т.к. выпуск их давно прекратился, а те, что дожили до наших дней, могут иметь нестабильные параметры из-за плохого вакуума.

Поэтому выбор был сразу сделан в пользу пальчиковых ламп. Тем более что их ассортимент значительно шире и при повторении схемы открываются более широкие возможности для поиска собственного звука.

При смене ламп одинаковой цоколёвки АЧХ корректора не изменяется, меняется только коэффициент усиления и характер звучания. В некоторых случаях требуется изменить смещение на сетках, чтобы получить нужный ток анода.

Прослушивание проводилось в таком составе: доработанный проигрыватель «Электроника Б1-01» с головкой Shure-V15VxMR (иногда использовалась также головка «Корвет-018»), усилитель «Oberton-33Cstb» и АС различных типов.

Схема особых пояснений не требует, т.к. для многих любителей, конструирующих р/аппаратуру, это хорошо известные каскады SRPP, широко дискутируемые в специальной литературе. ООС в тракте отсутствует, коррекция пассивная. Элементы корректирующей цепи подобраны с наименьшими отклонениями от номинала. Конденсаторы К71-7 имеют допуск не более 0,5%, резисторы МЛТ-0,25 подбирались с точностью 1%. В результате все изготовленные нами корректоры имели отклонения АЧХ не более 0,5 дБ. Все детали самые обычные, никакой экзотики: резисторы МЛТ, электролиты К50-32, К53-4(К53-1), переходные конденсаторы — бумажные К40У-9 или МБГЧ. Разумеется, аудиофильские компоненты дадут более впечатляющие результаты, но и при использовании перечисленных типов корректор звучит великолепно. Конденсаторы С1 и С10 служат для подавления радиопомех, что особенно актуально в городах, где есть телецентры и р/станции. С2, С6, С11, С15 служат для компенсации местной ООС. Элементы R5, C3, R6, C4, а также R17, C12, R18, C13 — формируют нужную АЧХ.

 

Источник питания

На питании стоит остановиться подробнее. В упомянутом преде Paradise в качестве источника питания использовался серийно выпускавшийся трансформатор ТАН-31, мостовой выпрямитель КЦ 405А и электролиты К50-7.

Накал ламп питался выпрямленным напряжением, чтобы снизить фон на выходе.

В новой разработке мы поставили прямонакальный кенотрон 5Ц3С, металлобумажные конденсаторы МБГО-1 20 мкФ х 400В и дроссель с индуктивностью 2,5 Гн и током 0,1 А. От выпрямления напряжения питания накала ламп пришлось отказаться, т.к. это влияло на характер звучания корректора не самым лучшим образом. Для уменьшения фона в сетевом трансформаторе накальные обмотки мотались бифилярно (т.е. в два провода), и средняя точка соединялась с минусом анодного источника питания и корпусом. Эти меры не устраняли полностью фон по накалу, но его уровень был незначителен и при прослушивании почти не слышен, т.к. маскировался поверхностными шумами пластинки.

Сетевой трансформатор тороидальный, мощностью 60 Вт. Он имеет две обмотки по 240 В, 5 В для накала кенотрона и 12,6 В с отводами на 6,3 В (бифилярно).

Ещё более высокое качество звучания было получено со стабилизированным источником питания, который мы опробовали на лабораторном образце корректора. Звучание приобрело насыщенность, стало более артикулированным, с более чёткими границами между инструментами, улучшилась микродинамика. Правда, по себестоимости такой источник питания приближается к самому корректору, но попробовать стоит.

Конструкция

Сам корректор выполнен на печатной плате из фольгированного стеклотекстолита толщиной 1,5 — 2 мм. Источник питания установлен на металлическом основании (дюраль, сталь, текстолит и пр.) толщиной 2 мм. Оба блока (питания и корректор) укреплены на стойках высотой 13 мм на общем основании, к которому через крепёжные уголки устанавливается лицевая панель и задняя стенка. Всё это закрывается перфорированным кожухом. Снизу — поддон, к которому прикреплены четыре опорные ножки. На задней стенке — сетевой разъём и выключатель, предохранитель и корпусная клемма. На лицевой панели — входные и выходные разъёмы и индикатор включения корректора в сеть.

 

Технические характеристики
Чувствительность, мВ 3 — 5
Выходное напряжение, В (с лампами 6Н23П и 6Н1П) 0,8 — 1
Входное сопротивление, кОм 47
Отношение сигнал/шум, дБ 50
Потребляемая мощность, Вт 40
Габариты (Ш х В х Г), мм 150 х 150 х 375
Масса, кг 5

Настройка

В ней корректор практически не нуждается. Нужно лишь проверить напряжение питания анодных и накальных цепей, замерить режимы ламп. Равенство усиления по каналам осуществляется подбором ламп с учётом их параметров. При одинаковых параметрах триодов разброс по усилению не превысит 0,1 дБ.

Полезные советы

Чтобы дать себе больше свободы при выборе ламп, полезно в сетевом трансформаторе предусмотреть обмотку ~12,6 B на ток примерно 1 А. В настоящее время на рынке появилась масса ламп с одинаковой цоколёвкой, но разным напряжением накала. Конечно, у них предусмотрена возможность использования на 6,3 В, но в нашем случае это увеличит фон. Рекомендуемые лампы для прослушивания: 6Н2П (серый анод), 6Н23П, 6Н1П, 6Н6П, 12АХ7,12АТ7, 12AU7, E88CC, ECC83, ECC85 и др.

Можно попытать счастья и с октальными лампами, но для этого придется сделать переходные панельки.

При прослушивании имейте в виду, что все диски звучат по-разному и для выбора самой лучшей лампы придется прослушать несколько пластинок различных фирм и годов выпуска. Успехов!

ПрактикаAV #3/2002

поделиться

 

Tags: RIААТри Вфонокорректор

 

 

Часы на ИВ-11 схема

Ниже представлена схема ламповых часов на вакуумно-люминесцентных индикаторах ИВ-11:

Для питания индикаторов я собрал высокочастотный двухтактный импульсный преобразователь на специализированной микросхеме CD4047В (DD1), микросхема управляет сборкой полевых транзисторов DD2, которые коммутируют импульсный трансформатор T1. Трансформатор намотан на ферритовом кольце, диаметром 13мм, сечение 6 на 3 мм. Все обмотки имеют отвод от середины, первичная обмотка содержит 14 витков, вторичная для накала 2 витка, проводом 0,4мм. Вторичная анодная обмотка 140 витков, проводом 0,2мм. Намотка не составляет труда при использовании специального челнока. Частота генератора составляет 50 кГц. Полное напряжение накала составило 1,42В по осциллографу, анодное напряжение относительно среднего вывода около 50В.

Чтобы исключить свечение сегментов при отсутствии управляющего напряжения, нужно подать на сетку отрицательное смещение относительно катода. Это можно реализовать положительным смещением напряжения накала относительно общего провода. Для этой цели в схеме установлен стабилитрон VD3 подколоченный к среднему выводу обмотки накала, на катод стабилитрона через резистор подается анодное напряжение, для получения смещения.

Для коммутации анодов сегментов и сетки я использовал специализированные высоковольтные драйвера TD62783AP (DA1, DA2), максимальное коммутируемое напряжение 50В.

Вообще часто встречается другая схема управления, на катод подают отрицательное смещение равное анодному напряжению, аноды сегменты и сетки при этом коммутируют с помощью биполярных pnp транзисторов на общий провод. Я не захотел паять кучу транзисторов, и усложнять печатную плату, поэтому применил драйвера, о чем говорил выше.

В качестве управляющего микроконтроллера DD3 был выбран PIC16F876A, так как потребовалось много линий для подключения всех компонентов. Программа написана на ассемблере.

В качестве часов реального времени используется популярный модуль DS3231, в котором нужно выпаять резистор, подающий внешнее питание на батарейку, а также светодиод, можно и микросхему памяти выпаять.

 

Для возможности синхронизации времени я использовал GPS модуль u-blox NEO-6mv2, на сайте уже была статья, посвященная этому модулю. С помощью транзистора VT3 микроконтроллер управляет питанием GPS модуля. Для установки связи с микроконтроллером, модуль должен иметь следующие настройки порта: скорость передачи 9600 бит в сек, 8 бит данных, 1 стоповый бит. По умолчанию модуль обычно поставляется именно с такими настройками, если это не так, нужно изменить параметры порта через специальную программу u-center, подключив модуль к компьютеру через USB-UART переходник.

Я дополнительно добавил в схему часов на ИВ-11 фоторезистор R14, и реализовал в программе микроконтроллера автоматическую регулировку яркости свечения индикаторов, в зависимости от освещения. Яркость регулируется путем изменения скважности.

Светодиод HL1 является разделителем часов и минут, он мигает во время отображения времени, светодиоды HL2-HL5 установлены для подсветки индикаторов. Зуммер для сигнала будильника имеет встроенный генератор, обычный зуммер не будет издавать звука. Из-за нехватки выводов микроконтроллера, пришлось оставить только две кнопки для настройки часов.

Часы смонтированы на двух односторонних печатных платах, индикаторы, фоторезистор и светодиоды располагаются на отдельной плате, которая при помощи разъемов вставляется в основную плату.

Драйверы DA1, DA2 можно заменить на KID65783AP, UDN2981A- UDN2984A, M54563P. Полевой транзистор VT3 можно заменить на IRLML2244, IRLML6402 и др., сборку полевых транзисторов DD2 на IRF7311, IRF7341, IRF7351, диоды VD1, VD2 на HER107- HER108, STTH110.

 

 

Ламповый рай

Я с огромным скепсисом отношусь к бесконечным доделкам-переделкам систем. Есть люди, которые меняют что-нибудь в системе каждую неделю, бесконечно экспериментируют и в какой-то момент перестают получать удовольствие собственно от музыки. Не то чтобы я считал, что достиг абсолюта — нет, передела совершенству не существует — но преследовать улучшение звука мне стало не интересно. Меня все устраивало, и хотелось просто слушать музыку. Я не мог даже предположить, что звучание системы, которое казалось мне идеальным, можно улучшить на порядок за счет небольших переделок.

Головка звукоснимателя Sumiko Amethyst

Тема в разделе » Акустические системы «, создана пользователем Андрей Никитюк , 14 авг Войти или зарегистрироваться. Работы Александра Червякова Тема в разделе » Акустические системы «, создана пользователем Андрей Никитюк , 14 авг Доброго дня, коллеги! Кто-нибудь знаком с данным мастером и его изделиями, есть ли мнения?

Мои оцифровки Alcher7. Заходите на сайт Ламповый Рай и качайте шикарную музыку.

 

↑ Корпус корректора

С корпусом я поступил так же, как и в прошлый раз. Поискал в интернете и купил. К корпусу требования были не строгими, он должен был быть не более определённого размера, для того, что бы вся аппаратура входила на мой «аудиофильский» комод, вмещать все модули, иметь приемлемый внешний вид. В итоге получил гордую надпись «Dun Mei Audio» на передней и задней панелях.

 

 

Вентиляционные отверстия предусмотрены только в верхней крышке. Все платы, трансформаторы и конденсаторы будут крепиться к дну, плюс вентиляционные отверстия пришлось немного посверлить. А потом, при перекомпоновке, ещё немного посверлить.

Платы фонокорректора и блок питания размещены в одном корпусе. Входы плат соединены с входными разъёмами экранированными проводами, слаботочная земля соединяется с общей землёй у сетки первой лампы, входные и выходные разъёмы изолированы от корпуса. Для демпфирования плат фонокорректора я использовал резиновые амортизаторы от старых CD-ROM-ов, остальные платы размещены на обычных стойках. Рядом с платами фонокорректора расположен выходной каскад с двумя трансформаторами. Блок питания отделён стальным экраном. Далее идут стабилизаторы анодного питания, блок задержки и стабилизатор накала.

Над блоком задержки подачи анодного напряжения и накала вторым этажом, размещены реле и мощные резисторы. Диодный мост анодного питания смонтирован под кожухом трансформатора. Конденсаторы фильтра питания смонтированы радом со стабилизаторами. В обоих случаях использован C-R-C фильтр.

Общая земля — это минусы первых конденсаторов (47 uF), соединённые облуженной проволокой 1,5 мм, сюда приходят все земляные провода устройства. Трансформатор тороидальный, крепится к корпусу через виброизолирующую прокладку из резины, закрыт кожухом из стали, в верхней стенке и в стенке кожуха, обращённой к лицевой панели, сделаны вентиляционные отверстия.

Содержание / Contents

  • 1 Предыстория
  • 2 Схема фонокорректора от John Broskie
  • 3 Прослушивание
  • 4 Новый фонкорректор
  • 5 Выбор лампы
  • 6 Выбор транзистора
  • 7 Организация смещения первого каскада
  • 8 Выходные трансформаторы
  • 9 Блок питания
  • 10 Задержка подачи напряжения накала и анодного напряжения
  • 11 Корпус корректора
  • 12 Параметры моего фонокорректора в сборе
  • 13 Итоги
  • 14 Литература и упомянутые источники
  • 15 Оцифрованные моим корректором треки для прослушивания
  • 16 Проекты модулей для EAGLE CAD
  • 17 После написанного

Фонокорректор-короля делает свита.

Комфортный звук! Вот, что надо! Все эти уловки по поводу «правильного», «живого», «достоверного», и, какого там еще звука, просто вредны для Вас и вашего кошелька. Попробуйте дома послушать живого саксофониста. А если оркестр? Как думаете, понравится? А ведь это самый правильный живой звук. Только он не для дома… Вот и получается, что аудио система должна передать правильное звучание, записанное и скорректированное так, что б у Вас дома создалась ИЛЛЮЗИЯ присутствия на «живом» концерте. А иллюзия по своему определению не может быть достоверной.

От admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *