Усилитель Бриг 001 СССР высшего класса Hi-Fi 2шт (1 2 3 ревизия )

Обычно при проектировании усилителя мощности задаются его параметрами: выходной мощностью, искажениями, частотной характеристикой и т.д. Исходя из этого, выбирают необходимую схемотехнику и элементы. Но иногда находятся оригиналы, которым интересно и забавно использовать для усиления компоненты изначально для этого не предназначенные. В результате порой получаются весьма качественные и необычные конструкции.

Широкоизвестный интегральный стабилизатор напряжения LM317, разработанный в далёком 1976 году, поддерживает напряжение на выходе на 1,25 В больше, чем напряжение на управляющем выводе, ток потребления по которому составляет всего 100 мкА. При этом выходной ток микросхемы может составлять 1,5 А. Чем не усилитель???

Идея

На рисунке представлена принципиальная схема усилителя. Микросхема IC1 управляется операционным усилителем IC3. На микросхеме IC2 собран источник постоянного тока, величина которого определяется номиналом резистора R9 и рассчитывается по формуле: I=1.25/R9.

Усилитель класса А

Резисторы R11 и R10 образуют цепь отрицательной обратной связи и определяют коэффициент усиления. Благодаря этой цепи компенсируется напряжение смещения в 1,25 В и на выходе поддерживается нулевое напряжение.

Краткое резюме: две микросхемы LM317, один ОУ и три резистора — вот всё, что необходимо для построения простого усилителя класса А. И кстати, заметим для аудиофилов — в тракте нет ни одного конденсатора!

Прнципиальная схема

Усилитель содержит два каскада усиления напряжения сигнала. Первый из них — дифференциальный, на транзисторах V7, V2 с источником тока в эмиттерных цепях на транзисторе V5. Второй каскад выполнен на транзисторах V7, V8. Выхрдной каскад — квазикомплементарный, на транзисторах VІ5—V18.

Необходимое для работы выходного каскада напряжение смещения создается устройством, собранным на транзисторе V14 и диодах V9—V11. Температурная стабилизация тока покоя транзисторов V17, V18 (220…250 мА) осуществляется за счет тепловой связи между корпусом одного из них и корпусом транзистора V14.

Терморезистор R20 служит для температурной компенсации дрейфа нуля выходного напряжения усилителя; для этого терморезистор установлен на теплоотводе транзистора V8.

Малые нелинейные искажения и высокая стабильность усилителя обусловлены в основном ООС, охватывающей выходной каскад. Напряжение обратной связи снимается с делителя R25 R26 и подается на вход каскада через транзистор V13. Это требует увеличения тока покоя транзисторов V8, V13 до 25 мА и установки их, как и транзисторов V15—V18 , на теплоотводе. Цепи L4 R48 и C12 R49 выравнивают нагрузку выходного каскада на высоких частотах.

Еще одна местная отрицательная обратная связь (глубиной около 15 дБ) охватывает выходной каскад и предшествующий ему каскад усиления на транзисторах V7, V8. Напряжение обратной связи подается с выхода усилителя через резистор R23 на базу транзистора V7. Цепь C8R27C9 ослабляет эту связь на высоких частотах, предотвращая самовозбуждение охваченных ею каскадов, и сужает полосу пропускания до 300…350 кГц.

Полоса пропускания первого каскада (примерно 30 кГц) и глубина обратной связи .(около 30 дБ в диапазоне звуковых частот), охватывающей весь усилитель мощности через делитель напряжения R13 R14, выбраны с таким расчетом, чтобы общая обратная связь на частотах выше 1 МГц не действовала.

Сужение полосы пропускания первого каскада достигнуто включением в эмиттерные цепи транзисторов V1, V2 катушки L1 и отделением базы второго из этих транзисторов от выхода усилителя резисторами R12, R15 (они увеличивают спад АЧХ каскада с ростом частоты). Цепь R15 C7 корректирует фазу в области высших частот звукового диапазона.

Схема

Учитывая, что LM317 может работать с максимальным током в 1,5 А, на выходе получаем относительно небольшую выходную мощность. К счастью, это ограничение можно преодолеть путем соединения нескольких LM317 параллельно, как представлено на схеме:

Увеличение по клику

Максимальное входное напряжение для LM317 составляет 40 В, поэтому, казалось бы, запитать усилитель можно от двухполярного источника с напряжением не более ±20 V. Однако, операционный усилитель, допускает работу с максимальным напряжением питания ±18 В. Поэтому, по мнению автора, работа схемы от источника питания с напряжением ±15В будет вполне разумным и безопасным решением.

Определившись с напряжением питания мы можем рассчитать необходимый ток покоя. Для нагрузки сопротивлением 8 Ом он составит 15 В/8Ω=1,875 А. Теоретическая максимальная мощность будет составлять около 14 Вт, хотя на практике получилось 12 Вт при чисто резистивной нагрузке. Так как акустическая система далека по своим свойствам от резистивной нагрузки, ток покоя следует взять несколько больший, например, 2,2А. В этом случае величина токозадающего резистора составит 1,25/2,2=0,56 Ω.

При этом на резисторе будет рассеивать чуть меньше 3 Вт, поэтому рекомендуется использовать резистор мощностью не менее 5 Вт. При таких параметрах потребляемая мощность одного канала усилителя составит 30×2,2=66 Вт.

А что вы хотели? Класс «А»!

Магнитный усилитель забытая схемотехника.

НА БЕЛОМ ФОНЕ.

Магнитный усилитель совершенно забыт в 21 первом веке усилиями производителей радиодеталей. И напрасно.

Магнитный усилитель, это простота и красота схемотехники. С применением управляемых дросселей насыщения, можно упрощением схемы обойтись без целого огорода ламп и полупроводников.

Перед применением магнитных усилителей нужно отдельно разобраться с его работой в конкретном устройстве для конкретных режимов. Это узел, который плохо поддается расчетам.

Регулирующий дроссель это:

Количество витков силовой обмотки.

Количество витков обмотки управления.

Коэффициент трансформации.

Из этого следует, что для нормальной работы магнитного регулятора нужно всего лишь правильно подобрать количество витков в обмотках.

Сначала выбирается количество витков в силовой обмотке для данного железа. Силовая обмотка должна садить проходящее через нее напряжение требуемого тока, на величину предела регулировки, это без подачи управляющего напряжения на обмотку управления. Чем больший проходящий через обмотку ток, тем меньше КПД магнитного регулятора.

Теперь нужно подобрать число витков в управляющей обмотке для заданного тока, регулирующего напряжения.

Число витков в управляющей обмотке должно быть достаточным для полной компенсации падения напряжения на силовой обмотке, заданным током регулирующего напряжения. Магнитная индукция обмотки управления определяется числом витков на Вольт. Чем больше витков, тем меньший ток управления, но больше напряжение.

Пропорция витков в обмотках магнитного регулятора, или коэффициент трансформации, должен быть такой, чтобы силовая обмотка не влияла на обмотку управления больше, чем может компенсировать управляющее напряжение и ток схемы управления.

Это все быстро и легко подгоняется экспериментально.

Несколько закономерностей для магнитных ключей.

Чем больше токи протекают через силовую обмотку, тем меньше КПД магнитных ключей.

Магнитные ключи, это устройства, работающие без запасов, путем тщательного подбора под конкретный режим.

Чем шире диапазон регулирования, тем меньший КПД магнитного ключа.

Вот, для примера, несколько схем 1961 года, армейских и бытовых.

1. Стабилизатор анодного напряжения 5000 вольт лампы ГИ-19Б, применяемой в РЛС П-12, 1961г.

Магнитный усилитель стабилизатор 5000В

Схема была настолько засекречена, что описания принципа ее работы не было даже в сопутствующей документации.

Принцип ее работы основан на балансном мосте, выполненном на лампе 6Н1П. Чем больше положительное напряжение на 2й ножке — сетке регулирующей лампы 6Н1П, тем меньше напряжение на 7й ножке управляющей лапы 6П1П. Следовательно, меньше напряжение на управляющей обмотке магнитного ключа и меньше выходное напряжение.

2. Схема стабилизатора 7,5В, 35А для накала лампы ГИ-19Б, применяемой в РЛС П-12, 1961г.

Магнитный усилитель стабилизатор 7В, 35А.

Особенность этой схемы, применение 2П1Л в качестве управляющей радиолампы.

2П1Л, это низковольтный лучевой тетрод прямого накала, предназначен для усиления звуковой частоты с напряжением накала 2В и конструктивно, с замком в ключе. Лампа для батарейных ламповых приемников. 2П1Л позже стала 2П1П — такая же, только пальчиковая.

Стабилизация напряжения в этом стабилизаторе осуществляется изменением накала лампы 2П1Л. В лампах прямого накала реакция на колебание накального напряжения намного быстрее, чем в лампах с косвенным накалом.

Вот фото магнитного ключа — стабилизатора накала лампы ГИ-19Б, в РЛС П-12.

Магнитный усилитель дроссель стабилизатора накала.

Если в трансформаторе, через магнитный шунт, вместо обмотки управления сделать насыщенный резонансный контур 50Гц х 220В, то этот контур будет держать стабильное напряжение в некоторых пределах изменения входного напряжения и выходной нагрузки. Это уже будет феррорезонансный стабилизатор.

4. Схема стабилизатора напряжения СНФ-200 для телевизоров 1961г.

Магнитный усилитель стабилизатор СНФ-200.

Работа схемы стабилизатора напряжения СНФ-200, заключается в следующем.

Магнитный усилитель принцип работы СНФ-200.

На толстой части керна мотается сетевая, ненасыщающаяся обмотка, которая подключается к сети 220В. Толщина керна не позволяет железу входить в насыщение в пределах допустимых нагрузок.

После магнитного шунта, толщина керна значительно меньше и в диапазоне нагрузок, на 10-15 процентов ниже максимальной мощности, железо входит в насыщение.

Напряжение на насыщенной обмотке при стабильной нагрузке, почти не меняется, при колебаниях сети 220В.

Расширить участок стабилизации до 20-30 процентов, можно компенсировав гистерезис железа, намотав некоторое количество витков на ненасыщенной части керна, в противоположную сторону. Таким образом, увеличение входного напряжения будет компенсировать неизбежный рост выходного напряжения, компенсируя гистерезис железа.

Магнитный усилитель принцип работы СНФ-200.

Количество витков компенсирующей обмотки зависит от ширины петли гистерезиса железа, пропорций количества витков в обмотках и диаметра провода.

Чем больше гистерезис железа, тем большие колебания выходного напряжения будут вызывать нестабильность нагрузки и нестабильность входного напряжения.

Уменьшение габаритов достигается применением резонансных конденсаторов в насыщающейся цепи, применением железа с малыми потерями и малой толщиной пластин.

Улучшение синусоиды на выходе, достигается применением резонансных дросселей в насыщающейся цепи.

Феррорезонансные стабилизаторы, кроме большого веса, габаритов, сильного гудения, имеют большую потребляемую мощность. Например, описываемый стабилизатор СНФ-200, являлся одним из лучших, и при этом его потребляемая мощность была 80Вт, при выходной мощности 160Вт.

Теперь можно привести примеры современных методов стабилизации переменного напряжения на основе магнитных регуляторов.

5. Вот простая схема эффективного стабилизатора напряжения на основе магнитного усилителя.

Магнитный усилитель принцип работы СНФ-200.

Выходное переменное напряжение стабилизируется магнитным усилителем, управляемым напряжением компенсации, получаемым от изменения накала дампового диода. Чем больше напряжение накала, тем больше компенсационное напряжение, и наоборот.

6. И напоследок схема регулировки сварочной дуги стационарной дуговой сварки ВДГ-303-3.

Магнитный усилитель принцип работы СНФ-200.

Напряжение дуги регулируется и стабилизируется управляющим, компенсирующим колебания сети 380В, напряжением 0+5В.

Вот фото магнитных ключей, стабилизаторов сварочного напряжения.

Магнитный усилитель принцип работы СНФ-200.

Статьи по теме.

Преобразователь фаз, 220V в 3 фазы.

Преобразователь фаз, 220V в 3 фазы. Заказать.

Разделительный трансформатор и фаза не бьется.

Спасибо за внимание.

С ув. Белецкий А. И. 15.01.2018г. Кубань Краснодар.

Параллельное включение

При параллельном включении четырёх микросхем LM317 максимальный выходной ток может достигать 6 А. При токе покоя 2.2 А максимальный ток через верхнее плечо усилителя составляет 4,4 А и 2,2 А через нижнее плечо, что в пределах безопасной работы.

Входное сопротивление определяется номиналом резистора R11 и составляет 10 K (относительно низкое, так как усилитель инвертирующий). Коэффициент усиления можно регулировать путем изменения номинала резистора R10. Рассчитывается по формуле: A=–R10/R11.

Ёмкость конденсатора С1 определяет верхнюю граничную частоту и предотвращает возбуждение усилителя на высоких частотах. При указанном на схеме значении 100 пкФ верхняя граничная частота усиления составляет 100 кГц. Но вы можете экспериментировать с этим значением на свой страх и риск (контролируйте наличие возбуждения усилителя).

Так как усилитель инвертирующий, автор предлагает подключать акустические системы наоборот, то есть плюсовую клемму акустики следует подключать к общему выводу усилителя, а минусовую — к выходу усилителя. При использовании инвертирующего предварительного усилителя акустику следует подключать обычным способом.

Особенности микросхемы УМЗЧ TPA2012D2 фирмы Texas Instruments

Микросхема TPA2012D2 фирмы Texas Instruments представляет собой стереофонический УМЗЧ класса D с мостовым выходом без ФНЧ и плавным (без щелчка) включением и выключением. Она имеет дифференциальные входы и раздельные входы плавного выключения (SHUTDOWN) для каждого из стереоканалов, а также общий генератор пилообразного напряжения без внешних времязадающих цепей. Условно можно говорить, что УМЗЧ TPA2012D2 — это два усовершенствованных УМЗЧ TPA2000D1 в одном корпусе. Это видно из функциональной схемы микросхемы TPA2012D2 (рис. 8).

Функциональная схема микросхемы TPA2012D2 фирмы Texas Instruments (Рис. 8)

Функциональная схема микросхемы TPA2012D2 фирмы Texas Instruments

Рис. 8. Функциональная схема микросхемы TPA2012D2 фирмы Texas Instruments

Напряжение питания микросхемы 2,5–5,5 В. При напряжении питания 5 В на нагрузке 4 Ом она обеспечивает выходную мощность до 2,1 Вт, а на нагрузке 8 Ом — 1,4 Вт в каждом канале. При питании от источника 3,6 В и нагрузке 8 Ом — 720 мВт в каждом канале.

Микросхема изготавливается в корпусе QFN размером 4×4 мм, который имеет 20 выводов (рис. 10). Кроме того, планируется «упаковка» микросхем в корпус WCSP еще меньших размеров (2×2 мм), с 16 каплеобразными выводами. Назначение выводов микросхемы TPA2012D2 в обоих корпусах сведено в таблицу 4.

Типовое включение микросхемы TPA2012D2 (Рис. 9)

Типовое включение микросхемы TPA2012D2

Рис. 9. Типовое включение микросхемы TPA2012D2

Расположение выводов корпуса 20QFN (Рис. 10)

Рис. 10. Расположение выводов корпуса 20QFN

Таблица 4. Назначение выводов микросхемы TPA2012D2 фирмы Texas Instruments в разных корпусах

Конструкция

Вариант конструкции усилителя показан на фотографии:

Усилитель класса А

Чертежи печатных плат в формате pdf здесь.

Статья подготовлена по материалам журнала «Электор Электроникс» Автор Юрген Майклс (Бельгия) Вольный перевод: Главный редактор «РадиоГазеты» Удачного творчества!

Комментарий от редакции «РадиоГазеты»:

Это усилитель класса «А» со всеми вытекающими последствиями как то:

  1. сильный нагрев практически всех элементов конструкции. Поэтому требуется применение радиаторов соответствующих размеров и организация эффективной вентиляции корпуса усилителя.
  2. настоятельно рекомендуется использование защиты акустических систем от постоянного напряжения на выходе.
  3. это не только усилитель класса «А»! У автора в тексте это почему-то не отмечено, но это однотактный усилитель, что накладывает особые требования на источник питания. Для снижения фона блок питания должен быть либо стабилизированный (ещё один радиатор), либо нужны фильтрующие конденсаторы большой ёмкости — не менее 10 000 мкФ на канал. Для уменьшения нагрева диодов выпрямительного моста здесь настоятельно рекомендуется использовать диоды Шоттки. Снабдить их небольшими радиаторами тоже не помешает.

Улучшить параметры усилителя можно довольно просто — применением более современного и качественного операционного усилителя.

Усилитель класса AB

Как следует из названия, усилитель класса AB представляет собой комбинацию усилителей типа «класс A» и «класс B», которые мы рассмотрели выше. Классификация усилителя AB в настоящее время является одним из наиболее распространенных типов конструкции усилителя мощности звука. Усилитель класса AB является разновидностью усилителя класса B, как описано выше, за исключением того, что обоим устройствам разрешено проводить в одно и то же время вокруг точки пересечения осциллограмм, что устраняет проблемы искажения кроссовера предыдущего усилителя класса B.

Два транзистора имеют очень небольшое напряжение смещения, обычно от 5 до 10% от тока покоя, чтобы сместить транзисторы чуть выше его точки отсечки. Тогда проводящее устройство, либо биполярное из полевого транзистора, будет включено в течение более одного полупериода, но намного меньше, чем один полный цикл входного сигнала. Следовательно, в конструкции усилителя класса AB каждый из двухтактных транзисторов проводит чуть больше, чем половину цикла проводимости в классе B, но намного меньше, чем полный цикл проводимости класса A.

Другими словами, угол проводимости усилителя класса AB находится где-то между 180 o и 360 o в зависимости от выбранной точки смещения.

картинка-схема усилителя класса АВ

Преимущество этого небольшого напряжения смещения, обеспечиваемого последовательными диодами или резисторами, состоит в том, что перекрестное искажение, создаваемое характеристиками усилителя класса B, преодолевается без неэффективности конструкции усилителя класса A. Таким образом, усилитель класса AB является хорошим компромиссом между классом A и классом B с точки зрения эффективности и линейности, при этом эффективность преобразования достигает примерно от 50% до 60%.

Эволюция схемы

Последовательные усовершенствования схемы Лина в 1965-1972 годы[15]

Исходная схема Лина (упрощённо)

Стабилизация температуры диодными или транзисторными датчиками

Генератор стабильного тока в нагрузке КУН

Биполярное питание

Дифференциальный входной каскад

Комплементарный выходной каскад

Череда усовершенствований базовой схемы началась не позднее 1961 года, когда британцы Тоби и Динсдейл опубликовали собственную версию усилителя Лина[1]. В этом, трёхкаскадном варианте, схему дополнил входной каскад, согласующий низкое входное сопротивление КУН c выходным сопротивлением источника сигнала[1]. Термистор, регулировавший ток покоя выходных транзисторов, был заменён германиевым диодом; в остальном КУН и выходной каскад остались неизменными[1]. В конце 1960-х датчики на кремниевых диодах стали стандартным оснащением УМЗЧ[8], и примерно тогда же появились первые транзисторные датчики — умножители напряжения база-эмиттер[16]. К концу 1970-х годов транзисторные датчики вытеснили диодные[16].

В начале 1970-х годов конструкторы УМЗЧ освоили применение транзисторных генераторов стабильного тока (ГСТ), до того использовавшихся лишь в аналоговых интегральных схемах[8]. Замена нагрузочных резисторов КУН (R3, R4 в схеме Лина) на активный ГСТ позволила снизить рабочий ток КУН (в схеме Лина он был вынужденно высоким), увеличить его коэффициент усиления до практического максимума (в 1970-е годы составлявшего примерно 1000…3000[17]) и отказаться от вольтобавки[8]. Исключение конденсатора вольтодобавки С3 устранило потенциальный источник искажений и приблизило схему к идеалу — усилителю постоянного тока[8].

Примерно тогда же, по мере удешевления компонентов блоков питания, произошёл переход с однополярного питания УМЗЧ на двуполярное; с исключением из схемы разделительного конденсатора С4 она превратилась в полноценный УПТ[8]. В новой конфигурации условный «нуль» (потенциал эмиттера) входной цепи КУН более не совпадал с общим проводом — теперь он был привязан к подверженной всевозможным помехам шине питания (обычно отрицательной)[8]. Задача согласования опорных уровней и фильтрации помех на практике оказалась несложной: вначале её решали с помощью входного каскада на одиночном транзисторе, а на рубеже 1960-х и 1970-х годов конструкторы впервые применили дифференциальный входной каскад[8]. По странному стечению обстоятельств дифференциальный каскад, применявшийся в ламповых вычислительных машинах и промышленной автоматике с 1940-х годов, не использовался конструкторами звуковой аппаратуры до середины 1960-х годов, когда инженеры RCA популяризовали его применение в схемах на новейших кремниевых транзисторах[18]. Превосходство дифференциального каскада над предшествовавшими ему схемами было столь велико, что уже в первую половину 1970-х годов он вытеснил их и стал непременным, безальтернативным компонентом транзисторных УМЗЧ[18].

Параллельно конструкторы — по-прежнему связанные необходимостью использовать транзисторы одной полярности — искали способы линеаризовать от природы нелинейный, асимметричный выходной каскад схемы Лина[19]. Асиметрию можно было свести к минимуму использованием комплементарных пар мощных транзисторов. Первые практические схемы на таких парах разработали в 1967—1968 годы Барт Локанти и Артур Бейли, но необходимые для них pnp-транзисторы были пока дороги и ненадёжны. Конструкторы вынужденно продолжили совершенствование схемы, использовавшей лишь npn-транзисторы. В 1969 году на свет появились три альтернативные схемы, в которых асимметрия пар Дарлингтона и Шиклаи отчасти компенсировалась диодом, добавленным в пару Шиклаи; в том же году начался выпуск усилителей на «тройках Quad» — трёхступенчатых составных транзисторах[19].

Полностью подавить искажения, порождавшие «транзисторный звук», эти полумеры не могли; радикальным решением, в принципе исключавшим появление коммутационных искажений, был перевод выходного каскада в чистый режим А. По этому пути пошла британская компания Sugden и многочисленные любители-самодельщики, но для массового производства транзисторные

усилители в режиме A были запретительно до́роги[20]. Вскоре промышленность освоила выпуск недорогих и надёжных кремниевых транзисторов pnp-структуры, в практику вошли полностью комплементарные выходные каскады, и проблема асимметрии ушла в прошлое[21]. Так, не позднее 1972 года, сложилась структурная схема трёхкаскадного модифицированного усилителя Лина[21].

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: