А.Кузьменко, RV4LK «Радио-дизайн» №11
Анодный дроссель
В схеме лампового усилителя мощности с параллельным питанием анодный дроссель играет чрезвычайно важную роль. Судите сами. К нему приложено все ВЧ напряжение, он подключен параллельно к катушкам П-контура и, соответственно, уменьшает их индуктивность и добротность, а также увеличивает начальную емкость «анодного» конденсатора П-контура.
Кроме этого, дроссель не должен иметь резонансов на рабочих частотах — любительских диапазонах. Он должен обладать высоким сопротивлением на рабочих частотах и иметь малую собственную емкость. Очень часто неудовлетворительная работа усилителя, особенно, на ВЧ диапазонах, связана с паразитными резонансами анодного дросселя.
Из вышесказанного видно, какими особенностями должен обладать всего лишь один из элементов усилителя мощности — анодный дроссель.
Прежде всего, чтобы удовлетворить всем перечисленным характеристикам, надо понять какое важное значение имеет длина провода, которым наматывается дроссель. Ни в коем случае нельзя использовать даже проверенные данные по числу витков и применять их с каркасом другого диаметра. Основной подход при выборе длины провода — она не должна быть кратной полуволне на любом из используемых рабочих диапазонов. Существует несколько вариантов изготовления анодного дросселя. Приведем два из них, наиболее часто встречающихся в радиолюбительской практике. Первый вариант.
Понятно, что, работая с высокочастотными напряжениями, потребуется каркас для намотки анодного дросселя из соответствующего материала — радиофарфора, фторопласта и т.п. Имея в своем распоряжении подходящий каркас, можно воспользоваться данными анодного дросселя от любой известной и проверенной конструкции и обязательно, зная диаметр его каркаса и число витков, определить длину провода. Затем проверить полученное значение на соответствие неравенства длины провода ln/2 для каждого диапазона. Если все в порядке и длина провода подходит, следует пересчитать количество витков по следующей формуле Wd2= Wd1 d1/d2 , гдe Wd1 — число витков дросселя диаметром d1; Wd2 — число витков дросселя диаметром d2; d1 [мм] — диаметр каркаса дросселя из описания; d2 [мм] — диаметр имеющегося каркаса.
Не менее важно знать диаметр провода для намотки. Его можно определить из соотношения D = 0,46 sqrt (Ia) [мм] , где la [A] — максимальный ток анода (постоянная составляющая). Второй вариант.
Предлагаю, проверенную на практике, конструкцию анодного дросселя. Его можно порекомендовать для использования в усилителях мощности с максимальным анодным током до 1 А, рис.1.
Дроссель содержит пять секций, намотанных виток к витку, проводом ПЭВ-2 0,41 мм на фарфоровом каркасе диаметром 19 мм. Вывод секции с максимальным количеством витков подсоединяется к источнику анодного напряжения и блокировочному конденсатору Cбл, а другой вывод (секция с наименьшим числом витков) — к аноду лампы. Зазор между секциями выбирается от 3 до 6 мм (лучше 6) и его длина зависит от имеющегося каркаса.
Дроссель хорошо работает на основных коротковолновых диапазонах- На WARC диапазонах желательно проверить его на отсутствие паразитных резонансов. Простейший способ проверки можно осуществить с помощью неоновой лампочки. В рабочем режиме под нагрузкой (не обязательно на полной мощности) следует поднести неоновую лампочку к «горячему» концу дросселя (у анода лампы). Она должна очень ярко засветиться и по мере продвижения к концу дросселя яркость свечения должна плавно уменьшаться без ярких вспышек и полностью прекратиться у «холодного» конца дросселя (возле блокировочного конденсатора). Яркие вспышки свидетельствуют о наличии паразитных резонансов. Если это условие выполняется, значит анодный дроссель пригоден для работы в Вашем усилителе.
Здесь рассмотрен, так называемый, секционированный тонкий анодный дроссель. К ним относятся дроссели, намотанные на каркасах диаметром 16 … 20 мм. Но существуют еще и «толстые» дроссели, каркасы которых имеют диаметр от 25 до 30 мм и более. Эти дроссели имеют собственные особенности и используют их, как правило, в промышленной аппаратуре большой мощности.
Для чего нужны усилители?
Производители радиостанций чаще всего выпускают приборы мощностью 4 или 10 Вт. Для гражданской радиосвязи этого вполне достаточно. К тому же законодательством РФ запрещено использовать радиоточки выходной мощностью свыше 10 Вт. Несмотря на это, купить транзисторные усилители мощности стремятся многие радиолюбители. Это обусловлено целым рядом факторов:
- во-первых, усилитель мощности на транзисторах незаменим в условиях большого города. Это обусловлено тем, что эфир засоряют различные предприятия;
- во-вторых, усилитель мощности на транзисторах стремятся установить водители в свои авто. Низкорасположенная антенна автомобиля не способна обеспечить качественной связью как в городе, так и на трассе;
- в-третьих, высококачественный усилитель мощности на транзисторах активно стремятся купить люди, чья работа или увлечение связаны с высоким риском возникновения чрезвычайного происшествия. Стоит отметить, что в случае ЧП подавать сигнал бедствия можно любым доступным способом;
- кроме того, транзисторные устройства подобного типа подходят для трансивера, помогающего преобразовать сигнал.
Исходя из вышесказанного, можно сделать вывод: транзисторные усиливающие устройства пользуются повышенным спросом, и купить их стремятся многие.
«РадиоЭксперт» – онлайн-сервис радиотоваров
Транзисторные приборы, усиливающие радиосигнал, стоимость которых находится на приемлемом уровне, можно заказать в магазине «РадиоЭксперт». Усиливающие приспособления на транзисторах, наряду с ламповыми приборами, пользуются повышенным спросом. Поэтому прайс ресурса содержит в себе несколько вариантов подобного оборудования. Компания реализует усиливающие приборы на транзисторах напрямую от производителей, поэтому их цена находится на приемлемом уровне. На сайте вы сможете найти усилители на диапазоны частот, предназначенных для любительской радиосвязи. Продажа всех товаров ведется через Интернет. Этим, в частности, тоже обусловлена низкая цена. Интернет-магазин осуществляет доставку всей купленной продукции. Таким образом, недорого купить радиотовары может как вся Россия, так и другие страны СНГ. Доставка осуществляется в кратчайшие сроки.
Данный усилитель является развитием идеи предложенной Игорем Гончаренко (DL2KQ) в статье «Легкий и мощный PA», которую можно прочитать в интернете по ссылке https://dl2kq.de/pa/1-1.htm . Поэтому я никого не агитирую, а просто хочу сказать, что анодный трансформатор — деталь тяжелая и необязательная в усилителе.
Написанная статья является описанием изготовленного усилителя, а не научным трудом, претендующим на открытие. Каждый выбирает то , что ему по душе.
Не забывайте, в усилителе присутствует высокое (1200 В) напряжение, опасное для жизни, правила электробезопастности никто не отменял! Не включайте усилитель в сеть со снятой крышкой!
Решение застабилизировать накал лампы принято только из-за особенностей местной электросети, напряжение которой гуляет от 180 до 240 В, а значит напряжение накала будет гулять от 10 до 13 В, мне просто хотелось забыть про эту проблему. Хотя если у радиолюбителя таких проблем нет, то стабилизатор накала можно не делать, а 12 В с обмотки накального трансформатора подать на С13 Рис.1.
Вход УМ — широкополосный, но для улучшения работы усилителя резистор Rк лучше заменить на переключаемые диапазонные фильтры. Резистор R1 — безындукционный, например ТВО.
Входной трансформатор Твх — типа «бинокль» собран из шести ферритовых колец М2000НМ-1 К20х12х6, намотан одновременно тремя проводами (один из них в фторопластовой изоляции — входная обмотка) и каждая обмотка содержит по 2 витка.
Антенное реле ТКЕ-54, три группы контактов К1.1 — К1.3 включены параллельно и используются для коммутации антенной цепи, а контакт К1.4 для включения входного реле Р2 — РЭН-34, контакты К2.1 — К2.2 включены так же параллельно.
Анодный L2 и защитный Др защ дроссели намотаны на ферритовых стержнях марки М400НН диаметром 10 и длиной 100 мм каждый, проводом ПЭВ-2 диаметром 0,27 мм, длина намотки — 70 мм.
Разделительные конденсаторы С7 и С10 — емкостью 1000 — 2000 пФ типа К15-У, с трехкратным запасом по напряжению и способные выдержать соответствующую реактивную мощность, тут экономить не следует. Попытка применить в ВЧ цепи «что попало под руку» ничем хорошим не заканчивается. С5 и С6 типа К15-У, КВИ-3.
В П-контуре использован вариометр, (обмотки включены параллельно) что позволило согласовать УМ с антенной Inv-V, питаемой длинной линией во всем диапазоне частот от 3 до 14 МГц. А конденсатор С8 (зазор между пластинами для Uа=1200 В около 0,5 — 0,8 мм) был заменен на галетный переключатель и четыре конденсатора типа К15-У на 33, 68, 150 и 220 пФ. Но детали П-контура могут быть и иными, в зависимости от возможностей радиолюбителя.
Конденсаторы С12 и С14 — типа КСО на 250 В.
Рис. 2.
Узел Auto TX на транзисторе VT1 Рис. 1 переводит УМ в режим передачи при появлении ВЧ сигнала на входе, это удобно для цифровых видов связи. Переключатель Auto TX выведен на переднюю панель.
На зло классической традиции я не стал запирать лампу на прием. Во первых нужно было бы применить реле с хорошей изоляцией между контактами и обмоткой (не менее 2 кВ), во вторых при отсутствии анодного тока немножко перегревается катод. Был изготовлен стабилизатор смещения (Рис.3) — транзисторный аналог стабилитрона с регулировкой напряжения стабилизации от 9 до 18 В, что позволило корректировать ток покоя (который составляет 40 — 50 мА) в процессе эксплуатации.
Рис. 3.
При изменении тока через стабилизатор от 40 до 300 мА напряжение стабилизации изменяется на 0,2 В. Транзистор VT1ст Рис. 3 установлен на радиатор.
Узел питания показан на Рис. 4.
Накальный трансформатор Т1 с хорошей изоляцией между обмотками (ТПП, ТН). Стабилизатор питания накала собран на транзисторах VT1, VT2 и интегральном стабилизаторе V1. Стабилизатор имеет ограничение по току нагрузки на уровне 2,3 А (определяется сопротивлением резистора R7 Рис.4), что уменьшает токовые перегрузки подогревателя при включении.
На транзисторе VT3 собран таймер, который примерно через 15 сек после включения УМ замыкает резистор R2, ограничивающий ток заряда электролитических конденсаторов анодного выпрямителя. Напряжение +27 В используется для питания реле и иллюминации. Транзисторы VT2, VT3 и диодная сборка VD5 Рис. 4 установлены на радиаторах.
Анодный выпрямитель на диодах D1 — D4 собран по схеме учетверения сетевого напряжения, хотя напряжение анода 1200 В (да еще -100 В просадка при нагрузке) для ГИ-7Б несколько маловато. Поэтому целесообразнее собрать выпрямитель по схеме Рис. 5 для получения 1800 В (схема использована из статьи Игоря Гончаренко, DL2KQ). Каждый из диодов D1 — D4 зашунтирован конденсатором 1000 пФ 1000 В. Дроссель ДР от сетевого фильтра импульсного блока питания видеомонитора.
Рис. 5
В результате на эквиваленте нагрузки 50 Ом 200 Вт при входной мощности 15 Вт получено на частоте 3,600 МГц — 180 Вт (ток анода 250 мА), а на частоте 14,200 МГц — 190 Вт (Iа 260 мА).
Внешний вид учетверителя:
Анодный блок:
Ламповый блок:
Монтаж общий:
Внешний вид:
Изготовленный усилитель (размеры корпуса 350х310х160 мм) получился безопаснее любого импульсного компьютерного блока питания, ток утечки на землю составляет 0,05 мА. С момента ввода в эксплуатацию УМ, он пережил несколько SSB, RTTY и PSK тестов, а также при повседневной работе, показал себя надежным изделием.
UR5YW, Мельничук Василий, г. Черновцы, Украина.
E-mail:
Здравствуйте! Предлагаю вашему вниманию РА на транзисторах IRF-IRL. Мной была повторена схема приведенная ниже. РА был собран без переделок. Транзисторы специально не подбирались. Пробовал три четверки:- IRF 510, IRF 540, IRLZ 24N. Просто экспериментировал, вернее интересовала самая лучшая отдача мощности на 21 и 28 Мгц. Все работали, но если на НЧ диапазонах мощность подводилась под 120- 140 ватт, то на 21 Мгц спадала до 80 ватт, а на 28 Мгц, до 60 ватт. Питание 13,6в, больше не подавал, хотя можно эти полевики питать и в два, три раза большим напряжением для оживления «пятнашки» и «десятки». Остановился на IRF 540. Прелесть этого РА в том, что он раскачивается очень маленькой мощностью;-3-5 ватт. С QRP трансивером, просто «бомба.» Стоимость в пределах 100 гривен, а может и у кого то, вообще, бесплатно выйдет. Но с мощностью раскачки, ПОМНИТЕ ВСЕГДА!!!-не больше 5 ватт. До «двадцатки», гарантированные 100-120 ватт, а что еще нужно? «пятнашка» и «десятка» может у кого то и помощнее получится, но не меньше, чем заявляю. ДПФ отдельная конструкция, взятая из двух или может из трех других транзисторных РА, я подбирал исходя из имеющихся в наличии, емкостей. Не помню уже какой диапазон с какой конструкции, но все они 5го порядка, настроенные ВХ,-ВЫХ.50\50 Ом. Как исполнено конструктивно, видно на снимках.
Усилитель собран по двухтактной схеме на мосфетах T1 — T4. Трансформатор типа длинной линии ТR1 обеспечивает переход от несимметричного источника возбуждения к симметричному входу двухтактного каскада.
Резисторы R7, R9 позволяют согласовать входное сопротивление каскада с 50-омной коаксиальной линией в диапазоне 1,8-30 МГц.
Их низкое сопротивление обеспечивает очень хорошую устойчивость усилителя к самовозбуждению. Для установки начального смещения, служит цепь R14, R15, R20, R21.
Цепь из стабилитрона DZ1 и диодов D1, D2 предохраняют затворы транзисторов от всплесков высокого напряжения. Диоды D4, D5 последовательно с резисторами R11, R12 создают небольшое авто смещение.
Цепочками обратной связи R18, R19. C20, C21 настраивается АЧХ усилителя. Конденсатор С22, подбираем по максимальной амплитуде выходного сигнала на частотах 24-29 Мгц.
Трансформатор TR1 выполнен на бинокле амидон BN-43-202, 2х10 витков эмалированного провода диаметром 0,35 мм. немного скрученных, примерно 2е скрутки на см.
Трансформатор TR2 выполнен на бинокле амидон BN-43-3312 Первичная обмотка один виток из оплетки кабеля, внутри которой намотано 3и витка МГТФ 1мм.
FB1, FB2, ферритовые бусинки амидон FB-43-101, которые одеты непосредственно на выводы резисторов R7, R9. как на схеме.
Дроссель DR1 любой из блока питания от компьютера, который на небольшом ферритовом стержне, обычно имеет 8-15 витков провода 1,5 — 2 мм. В моём случае использован с 10тью витками провода 1,5 мм. При замере прибором, показал индуктивность 4,7 мкГн.
Резистор R14, R15, Желательно применить многооборотные.
Настройка усилителя по току покоя проста, но требует внимания. Резистор R15 устанавливаем в среднее положение, R14 в нижнее по схеме, подаем питание, контакт PTT соединяем с минусом чтобы открылся ключ T5. и на стабилизатор пять вольт пришло питание. Не устанавливая трансформатор TR2, подключаем ампер метр, Плюсовым щупом к плюсу питания, другим (минусовым) щупом, поочередно, к одному и другому плечу транзисторов. Поворачивая движок резистора R14 в верх по схеме, подымаем ток покоя до 100 ма. Затем резистором R15 добиваемся одинаковых показаний обоих плеч. И так далее пока на каждом из плеч не будет по 220 Ма.
На этом настройка тока покоя окончена, можно зафиксировать резисторы лаком или краской, чтобы случайно не сбить.
Усилитель мощности (УМ) выполнен по схеме с общей сеткой на проверенной временем надёжной лампе прямого накала с графитовыми анодами ГУ-81М (рис. 1). Несомненными преимуществами этого УМ является его готовность к работе через несколько секунд после включения и неприхотливость в эксплуатации. Применяемая в усилителе защита от перегрузок и коротких замыканий, мягкое включение и регулируемый спящий режим работы позволили создать экономичный УМ с достойными характеристиками при минимальных габаритах и затратах. В нём используются в основном отечественные комплектующие. Усилитель имеет низкий уровень акустического шума, поскольку вентилятор включается автоматически (только при достижении в ламповом отсеке температуры более 100 о С). Высокая линейность обеспечена выбором оптимального режима работы лампы и применением вариометра в П-контуре вместо традиционной катушки с закорачиваемыми витками. Всё это позволило получить подавление второй и третьей гармоник в выходном сигнале на уровне -55 дБ. Выходная мощность усилителя — 1 кВт при напряжении на аноде лампы 3 кВ и входной номинальной мощности 100 Вт.
Рис. 1. Схема усилителя мощности на лампе ГУ-81М
На входе усилителя включены диапазонные П-контуры L9-L17, C8-C25, переключаемые посредством реле К6- К14. Они обеспечивают согласование с любым импортным трансивером (даже не имеющим встроенного тюнера), обеспечивая КСВ по входу не хуже 1,5 на всех диапазонах. Время перехода УМ в спящий режим от 5 с до 15 мин устанавливает регулятор, который выведен на переднюю панель. Также введён режим работы усилителя при пониженной до 50 % выходной мощности («TUNE»), который получается при снижении напряжения накала лампы VL1 до 9 В. При этом можно сколь угодно долго настраивать УМ и полноценно, без потери качества сигнала, работать в эфире.
В усилителе применена параллельная схема питания анодной цепи. По сравнению с последовательной схемой она более безопасная, поскольку на элементах П-контура отсутствует высокое напряжение. Применение высокодобротной катушки индуктивности, подключаемой параллельно обмоткам вариометра на ВЧ-диапазонах, и отсутствие закорачиваемых витков катушки П-контура позволило также получить практически одинаковую выходную мощность на всех диапазонах.
При включении УМ в сеть напряжение 220 В поступает через сетевой фильтр L19L20 на первичную обмотку трансформатора Т2 через галогеновую лампу EL1. Это обеспечивает мягкое включение усилителя, продлевая жизнь лампе ГУ-81М и другим элементам устройства. После зарядки конденсаторов С40-С49 высоковольтного выпрямителя до 2,5 кВ напряжение, снимаемое с делителя на резисторах R13- R16, поступает на базу транзистора VT3, транзистор открывается, срабатывает реле К4, замыкая своими контактами К4.1, К4.3, К4.4 галогеновую лампу EL1. На обмотку I трансформатора Т2 поступает полное напряжение сети. Особенность такого включения — малый гистерезис срабатывания/отпуска-ния реле К4, что обеспечивает надёжную защиту от различных перегрузок (короткое замыкание во вторичных цепях питания, цепи накала и замыканиях в обмотке трансформатора Т2). При возникновении любой из перечисленных неисправностей напряжение на базе транзистора VT3 уменьшится, реле К4 выключится и трансформатор Т2 вновь окажется подключённым к сети через лампу EL1, что ограничивает ток на уровне 1 А, предотвращая выход из строя лампы VL1 и УМ в целом.
Управление работой усилителя осуществляется узлом на транзисторе VT1. При замыкании на общий провод контакта Х1 «Упр. ТХ» (ток в этой цепи 10 мА) транзистор открывается и реле К1, К2 подключают своими контактами вход и выход усилителя к ВЧ-разъёмам XW1, XW2. Одновременно контакты реле К1.2 замыкают цепь катода лампы VL1 на общий провод, и усилитель переключается в режим передачи сигнала. В режиме «QRP» выключатель SA3 отключает питание транзистора VT1, что исключает переход усилителя в активный режим, и в антенну сигнал поступает непосредственно с выхода трансивера.
Вентиляторы М1 и М2 поддерживают температуру УМ, исключающую перегрев элементов усилителя. При пониженном напряжении питания они работают практически бесшумно. В отсеке питания усилителя установлен компьютерный вентилятор М1 (12 В, 0,12 А, диаметр 80 мм), работающий при напряжении 7…8 В. В ламповом отсеке установлен вентилятор М2 размерами 150x150x37 мм на рабочее напряжение 24 В, который питается от цепи накала лампы VL1. В обычном режиме вентилятор работает при пониженном до 8…10 В напряжении питания, а при полной выходной мощности оно повышается до 20…22 В. Управляет работой вентилятора М2 узел на транзисторе VT2. При переходе усилителя в режим «ТХ» напряжение +24 В с коллектора транзистора VT1 через диод VD3 и резистор R10 поступит на конденсатор С35. Когда температура в ламповом отсеке повысится до 100 о С, термоконтакты SK1 разомкнутся и через 8…10 с конденсатор С35 полностью зарядится. Откроется транзистор VT2, сработает реле К5 и переключит вентилятор М2 на повышенные обороты. После выхода усилителя из активного режима благодаря медленной разрядке конденсатора С35 через базовую цепь транзистор VT2 удерживается в открытом состоянии ещё 1,5…2 мин и работа вентилятора на повышенных оборотах продолжается. Если время передачи менее 8 с, вентилятор работает на пониженных оборотах, не создавая лишнего акустического шума. Резистор R34 подбирают по минимальным оборотам вентилятора, обеспечивающим температурный режим в УМ.
В усилителе применён режим энергосбережения, хорошо зарекомендовавший себя во многих конструкциях автора. Узел управления этим режимом выполнен на транзисторах VT4-VT6. При включении питания усилителя конденсатор С55 заряжается от источника + 12 В (DA1) через подстроечный резистор R9 и резистор R12. При каждом включении на передачу с коллектора транзистора VT1 напряжение +24 В поступает на базу транзистора VT4 через делитель на резисторах R6, R7. Транзистор VT4 открывается и разряжает конденсатор С55. Но если усилитель какое-то время не работал на передачу, конденсатор С55 успевает зарядиться полностью (время зарядки определяется резистором R9), открывается составной транзистор VT5, VT6 и замыкает на общий провод цепь базы тран-зистора VT13. Реле К4 обесточивается, и первичная обмотка трансформатора Т2 вновь запитывается через лампу EL1. Усилитель переключится в режим энергосбережения, при котором потребляемый ток и нагрев минимален, а готовность усилителя к работе на полную мощность составляет 1,5…2 с. В режиме ожидания напряжение накала лампы VL1 снижено до 9 В. Для выхода из этого режима достаточно кратковременно нажать на кнопку SB1 «ТХ» или перевести трансивер в режим передачи, соединив разъём X1 с общим проводом.
Стабилизаторы напряжения на микросхемах DA1 и DA2 служат для питания узлов автоматики и реле. Резистор R31 ограничивает ток при коротком замыкании в цепи +24 В. Высоковольтный выпрямитель построен по схеме удвоения напряжения, которая по своим характеристикам близка к мостовой схеме, но требует в два раза меньшего числа витков анодной обмотки трансформатора.
Трансформатор Т1 выполнен на магнитопроводе типоразмера K20x10x7 мм из феррита марки 200-400НН. Вторичная обмотка содержит 27 витков провода ПЭЛШО 0,25. Первичной обмоткой служит провод, проходящий через отверстие кольца и соединяющий контакт реле К2.1 с вариометром L1.
Сетевой трансформатор Т2 намотан на тороидальном магнитопроводе от ЛАТР-1М (9 А). Если УМ будет эксплуатироваться в «умеренном» режиме (т. е. без длительной работы в контестах), можно оставить «родную» сетевую обмотку, которая содержит 245 витков провода диаметром 1,2 мм. Если обмотку перематывать, диаметр провода желательно увеличить до 1,5 мм.Ток холостого хода сетевой обмотки должен быть 0,3…0,4 А. Вторичная обмотка (II) содержит 1300 витков провода ПЭВ-2 0,7. Обмотка питания реле (III) содержит 28 витков провода ПЭВ-2 0,7, накальная (IV) — 17 витков провода ПЭВ-2 2 с отводом от 12-го витка.
Усилитель смонтирован в металлическом корпусе размерами 500x300x300 мм. Глубина подвала шасси — 70 мм (рис. 2). В подвале (рис. 3) размещены платы высоковольтного выпрямителя, управления, стабилизаторов напряжения +12 и +24 В, плата измерителя мощности, сетевой фильтр, плата входных контуров, реле К3-К5, автоматический выключатель SF1 ВА47-29 на ток 10 А. Лампа EL1 расположена около выключателя SA4 «PWR» так, чтобы её свечение было видно через прозрачный корпус светодиода HL1 (синего цвета свечения), который установлен на лицевой панели рядом с SA4.
Рис. 2. Смонтированный УМ
Рис. 3. Размещение плат в корпусе УМ
Переключатель SA1 применён от согласующего устройства радиостанции Р-130, который подвергся значительной модернизации: фиксатор переделан на десять положений, добавлена галета для переключения реле входных контуров, добавлен общий посеребрённый токосъёмник толщиной 1,5 мм.
Дроссель L6 содержит 50 витков провода ПЭВ-2 0,7, намотанного виток к витку на стержне диаметром 10 и длиной 80 мм из феррита 1000НН.
Двухобмоточный дроссель L7, L8 содержит 2×27 витков провода ПЭВ-2 1,8, намотанного бифилярно виток к витку на двух сложенных вместе стержневых магнитопроводах диаметром 10 и длиной 100 мм из феррита 600НН.
Катушки L9-L17 — бескаркасные, намотаны проводом ПЭВ-2 на оправке диаметром 18 мм. Все детали входных контуров распаяны со стороны печатных проводников на плате реле. Намоточные данные катушек и номиналы ёмкостей конденсаторов приведены в таблице.
Таблица
Диапазон, МГц | Обозначение на схеме | Число витков | Диаметр провода, мм | Емкость конденсатора Свх, пФ | Емкость конденсатора С вых, пФ |
Дроссель L18 — ДМ-2,4 индуктивностью 10 мкГн. Сетевой фильтр L19L20 намотан на половине магнитопровода от трансформатора ТВС90 или ТВС110. Намотка — бифилярная проводом МГТФ 1 мм до заполнения.
Термоконтакт SK1 (от электрического кулера или другого нагревательного прибора) с нормально замкнутыми контактами рассчитан на температуру срабатывания 90…100 о С. Он установлен на ламповой панели ГУ-81М. Лампа ГУ-81М установлена в родной панели «подкова» на 30 мм ниже уровня шасси. Получившее распространённое мнение о необходимости «раздевания» ГУ-81М ничего, кроме проблем с нарушением контактов, усложнением крепления лампы и её охлаждения, не принесёт. А «значительное», по утверждению некоторых радиол юбителей — конструкторов, уменьшение ёмкости анод-катод, которое составило 2,8…3 пФ (проверено экспериментально), не окажет на работу УМ существенного влияния.
На лицевой панели УМ размещены органы управления, индикации и контроля (рис. 4). Измерительные приборы PA1 и PA2 — М42300. РА1 имеет ток полного отклонения 1 мА, а у РА2 он может быть существенно больше. Этот прибор должен измерять (с учётом шунта R30) ток до 1 А. Шкала прибора рА1 отградуирована непосредственно в ваттах. Индикатор VL2 — импортная неоновая лампа на напряжение 220 В. Лампа EL1 — галогеновая, 150 Вт на 220 В (диаметр 8 и длина 78 мм).
Рис. 4. Лицевая панель УМ
На задней панели усилителя размещены ВЧ-разъёмы, гнездо управления Х1 «тюльпан», клемма заземления, сетевой разъём и разъём подключения вентилятора. Все ВЧ-разъёмы, конденсатор С3, клемма заземления, блокировочные конденсаторы и вывод 6 панели лампы ГУ-81М соединены между собой медной шиной сечением 15×0,5 мм.
Реле К1 — РЭН33, К2 — РЭН34, КЗ — ТКЕ54, К4 — ТКЕ56, К6-К14 — РЭС9 (паспорт РС4.524.200). Все реле — на номинальное рабочее напряжение 24- 27 В.
Конденсатор переменной ёмкости СЗ — с зазором 0,8…1 мм, конденсаторы С4-С7, С27 — К15У-1, СЗЗ — КВИ-3. Оксидные конденсаторы С40-С49 — импортные, конденсаторы С35 и С55 должны иметь малый ток утечки. Все блокировочные конденсаторы — КСО, С8-С25 — КТ, КСО. Все постоянные резисторы (кроме R3) — типа МЛТ, R3 — серии SQP-5.
Первичное налаживание усилителя производят при отключённой обмотке II трансформатора Т2. Измеряют напряжение накала, напряжения на выходах стабилизаторов, отлаживают работу узлов автоматики, и только убедившись в полной работоспособности этих узлов, переходят к высоковольтным цепям. Вместо высоковольтной обмотки к выпрямителю-удвоителю подключают любой маломощный трансформатор и, подавая на выпрямитель-удвоитель переменное напряжение 100…200 В, проверяют его работоспособность и распределение напряжения на соединённых последовательно оксидных конденсаторах С40-С49. Если всё в норме, подключают, соблюдая меры предосторожности, высоковольтную обмотку. Напряжение ненагруженного выпрямителя может достигать 3000 В.
Ток покоя лампы VL1 должен быть 25…30 мА. Не подключая трансивер, проверяют УМ на отсутствие самовозбуждения в режиме «ТХ» на всех диапазонах. Далее, подключив трансивер кабелем длиной не более 1,2 м, при отключённом тюнере (если таковой имеется) настраивают входные контуры L9-L17, C8-C25 при включённом на передачу УМ, подавая на его вход сигнал мощностью 10…15 Вт. Настройку производят, начиная с ВЧ-диапазонов, по минимуму КСВ на приборе трансивера. Затем увеличивают входную мощность и сдвиганием/раздвиганием витков этих катушек ещё раз уточняют настройку.
Настройку П-контура также производят при минимальной входной мощности, предварительно подключив к выходу усилителя эквивалент нагрузки 50 Ом достаточной мощности (например, от радиостанции Р-140), и начиная с ВЧ-диапазонов, подбирают положение отводов у катушки L2. Затем переходят к НЧ диапазонам.
Подавление гармоник, измеренное автором с помощью анализатора спектра С4-25 и импортного анализатора 8590А, составило не менее -45 дБ на диапазоне 28 МГц и -55 дБ на НЧ-диапазонах. Анод лампы ГУ-81М при длительной (3…5 мин) работе в режиме CW имел слегка розовый оттенок, что для лампы вполне допустимо.
Дата публикации: 01.12.2015
Мнения читателей
- Александр / 17.08.2017 — 21:19 Вот-вот, и я о том же, чтобы до киловатта в катод раскачать, на вход надо минимум 150 ватт.
- Владимир / 29.07.2017 — 23:45 Хороший усилитель,автору спасибо. Повторил эту схему, при 75 ватт раскачки отдаёт 500 ватт.
- АЛЕКСАНДР / 16.05.2017 — 15:31 У меня такой УМ только на двух лампах ГК-81М выполненный Вчячеславом работает уже почти два года безупречно…
- Геннадий / 26.01.2017 — 15:40 С таким качеством делал конструкции в 14-летнем возрасте, только мощности конечно поменьше, на хулиганский диапазон одноклассникам. За такое качество брать деньги стыдно.
- Николай / 20.01.2017 — 20:49 Все здорово.Все раскачается легко 100 ваттами даже меньше, я проверял Нужно чтобы высокое было под нагрузкой не меньше 3000,тогда лампа раскрывается С уважением R9SC
- Александр / 30.10.2016 — 04:34 Сомневаюсь я, что можно раскачать в катод до киловата на выходе, при ста ватах на входе, даже если и с входными контурами. А в схеме есть много интересных решений, питание, защита, охлаждение, ВКС. Взял за основу, но раскачивать буду в сетку. Автору спасибо.
- Дон / 19.02.2016 — 15:27 Достойно внимания
- юрий / 31.01.2016 — 20:44 схема и конструкция хорошая