Что такое фазовый регулятор
Обычно фазовый генератор представляет собой небольшое устройство с поворотным механизмом, которое позволяет уменьшать или увеличивать подаваемую на приборы мощность. Работа таких устройств основана на одном небольшом полупроводниковом приборе, называемом симистором. Он позволяет изменять конфигурацию и фазность сигнала, что меняет и мощность приборов.
Что собой представляет фазовый регулятор
Обратите внимание! Такой прибор можно купить в магазине или же собрать для своей цепи самостоятельно. Применяют его для одно- и трехфазных сетей с небольшими различиями в конструкции.
Симистор
Аналог многокнопочного переключателя на тиристорах
Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.
Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.
В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.
В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.
Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.
Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.
Технические характеристики
Фазовый регулятор мощности имеет несколько важных характеристик, изменение которых влечет перемены в работе всей цепи. Разобрать данные характеристики можно на примере регуляторов марки PR, которые являются одними из самых популярных:
- напряжение в цепи 220 В;
- частота переменного тока 50 Гц;
- регуляция мощности в пределах от 0 до 97 % исходного значения;
- максимально допустимый уровень нагрузки составляет 1500 Вт;
- сила тока на аноде от 7 А при рабочей температуре 80 °С до 2 А при 100 °С;
- пределы рабочей температуры (на корпусе) от −10 °С до 100 °С;
- амплитуда колебания напряжения 1,75 В;
- масса до 15 г.
Модель PR
Для разных целей и цепей требуются регуляторы с различными характеристиками. В зависимости от цепи может понадобиться другая мощность регулятора, номинальное напряжение или частота тока.
Важно! У любого устройства регуляции мощности нужно обращать внимание на температурные пределы, особенно на верхнюю границу. Устройство при работе само выделяет большое количество тепла, а высокая окружающая температура может вызвать порчу схемы и даже возгорание.
Расчет транзисторного ключа
Для понимания привожу пример расчета, можете подставить свои данные:
1) Коллектор-эмиттер – 45 В. Общая рассеиваемая мощность — 500 mw. Коллектор-эмиттер – 0,2 В. Граничная частота работы – 100 мГц. База-эмиттер – 0,9 В. Коллекторный ток – 100 мА. Статистический коэффициент передачи тока – 200.
2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.
3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом.
4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА.
5) Считаем ток базы: 56\200=0,28 мА (0,00028 А).
6) Сколько будет на резисторе базы: 5 – 0,9 = 4,1В.
7) Определяем сопротивление резистора базы: 4,1\0,00028 = 14,642,9 Ом.
Как работает фазовый регулятор
Главную роль в работе фазового регулятора играет симистор. Он представляет собой нелинейный ключ на основе полупроводника. Данный элемент был получен благодаря усовершенствованию тиристора. Главное отличие состоит в том, что этот полупроводниковый ключ в открытом состоянии пропускает ток не в одном, а в двух направлениях. Это свойство дает симисторам возможность применения в цепях с переменным током, так как на них никак не влияет полярность напряжения, которая постоянно меняется в данных цепях.
Вам это будет интересно Особенности контактора модульного
Наличие нового свойства не означает отсутствие старого, характерного и для симисторов, и для тиристоров. Даже когда электрод управления отключен, проводимость всего элемента активна. Момент, когда элемент закрыт, наступает только тогда, когда переменный ток находится в положении ноль (то есть разность потенциалов на двух других контактах будет также равна нулю).
Обратите внимание! Еще одно полезное свойство применения симистора в качестве основного элемента — подавление помех на фазе при закрытии элемента. Это намного проще транзисторного регулятора, который также умеет уменьшать шумы входного сигнала.
Изменения сигнала
Все эти характеристики позволяют конструкции на основе симисторов осуществлять фазное изменение в сигнале. Каждый полупериод проводимость отключается, а время между закрытием и открытием прибора срезает часть периода. Сигнал из-за этого становится пилообразной формы. Путем изменения формы сигнала и происходит фазовое управление мощностью тока.
Важно! Симистор никак не влияет на амплитуду напряжения, поэтому название «регулятор напряжения» неправильно.
Схемы
На рисунке изображена схема двухкаскадного сенсорного выключателя, который можно сделать своими руками.
Схема выключателя на двух транзисторах
При касании к сенсору Е1 напряжение от тела человека поступает на усилитель через конденсатор С1. В качестве нагрузки подключено реле К1, которое срабатывает при очередном прикосновении, включая или отключая свои силовые контакты питания лампы. Диод VD1 предназначен для защиты транзистора VT2 от перепадов напряжения, а конденсатор С2 сглаживает пульсации.
Реле подбирается на ток срабатывания 15-20 мА (тип РЭС55А или РЭС55Б). Возможно, величину сопротивления резистора R1 придется изменить, чтобы реле надежно работало. Сначала вместо него подключается переменный резистор на 50 Ом и подстраивается, пока не заработает реле от сенсора. Затем замеряется величина сопротивления и находится постоянный резистор с соответствующим номиналом.
В качестве сенсора применяется фольгированный текстолит, медная пластина или металл с антикоррозионным покрытием. Его несложно изготовить своими руками. Если сенсор устанавливают на расстоянии от платы, подводящий провод следует экранировать.
Источник напряжения – это батарейка на 9 В или блок питания от сети, изготовленный своими руками. Вполне может подойти зарядное устройство.
Схему выключателя лучше собрать на плате, но можно и спаять проводами, поскольку деталей немного. Для их соединения между собой применяются проводки длиной 2-3 см. Для подключения к контакту сенсора и реле длина проводников составит не более 10 см.
При пайке важно не перегреть транзисторы и конденсатор на 0,22 мкф.
Бестрансформаторное питание от переменной сети 220 В не требует отдельного источника. Устройство на симисторе достаточно чувствительно и надежно работает. На схеме рисунка ниже гальванической развязки от осветительной сети нет, но защитой сенсора от высокого напряжения являются резисторы R1 и R2 общим сопротивлением 12 мОм, а также полевой транзистор VT1 c большим сопротивлением перехода сток-исток-затвор. Чувствительность схемы подбирается изменением сопротивления R2.
В подобных схемах, когда они под напряжением, прикосновение допускается только к сенсору Е1.
Схема сенсорного электронного выключателя на симисторе
Триггер построен на интегральной микросхеме К561ТМ2 (DD1). С его выхода 1 сигнал поступает на базу транзисторного усилителя тока VT2, эмиттер которого соединен с управляющим выводом симистора VS1. Как только на нем появляется напряжение 3 В, симистор открывается и включает источник света. При следующем прикосновении к сенсору триггер меняет состояние и на выходе 1 появляется противоположный сигнал, выключающий лампу EL1.
Мощность нагрузки для данной схемы составляет не более 60 В. Если ее потребуется увеличить, симистор устанавливается на радиатор.
Существуют схемы с функцией светорегулирования. При кратковременных прикосновениях к сенсору лампа будет загораться и гаснуть. Если держать руку на чувствительном элементе, яркость будет расти, а затем уменьшаться. Подобное устройство удобно применять для настольной лампы за рабочим столом. Можно настроить определенную освещенность, убрав руку с выключателя. На рисунке изображена схема сенсорного регулятора.
Схема сенсорного светорегулятора
Сигнал подается от чувствительного элемента на микросхему К145АП2, а она управляет симистором VS1 через транзистор VT1. Питание подается от сети 220 В. Светодиод HL1 является индикатором напряжения и подсвечивает сенсор в темноте.
Стабилитрон следует подобрать так, чтобы на конденсаторе С5 напряжение, подаваемое на входы 4,5 микросхемы, было в пределах 14-15 В. При его меньших значениях лампа мерцает.
Назначение
Регулятор мощности пригодится в цепях, содержащих следующие электрические приборы:
Регулятор с двигателем
- электродвигатели;
- устройства, которые используют в своей работе компрессоры;
- бытовые приборы: стиральные машины, вентиляторы, пылесосы;
- электрические инструменты различного рода;
- различные приборы освещения.
Простой пример использования регулятора при освещении
Важно! Не рекомендуется использовать фазовый регулятор в цепях, в которые включены холодильники, компьютеры, телевизоры и прочие потребители с тонкой настройкой, изменения характера работы которых может повлечь порчу устройства или другие непредсказуемые последствия.
Требования к применению
Сразу же следует отметить, что простейшие диммеры, которые используются в домашних условиях, способны применяться только для управления лампами накаливания и галогенками. Если их подключить к светодиодным лентам и люминесцентным лампочкам, оба устройства за короткий промежуток времени выйдут из строя. Именно поэтому необходимо выбирать светорегуляторы на основании того, какими лампочками они будут управлять.
Остальные требования при подключении диммера заключаются в следующем:
- Минимальная мощность светильника, к которому будет осуществляться подсоединение, не должна быть ниже, чем 40 Вт. Если проигнорировать данный момент, срок службы регулятора заметно сократиться.
- Не рекомендуется устанавливать светорегулятор в помещении, в котором температура выше 25оС. Перегрев устройства негативно скажется на его работе.
- На разрыв обязательно должен идти фазный проводник, который подключается к разъему с маркировкой L. Подсоединять ноль категорически запрещается, собственно как и при подключении выключателя света в стандартном исполнении.
- Для регулировки свечения люминесцентных ламп выбирайте продукцию с соответствующим обозначением, которое говорит о том, что лампочка может применяться для диммирования.
- Если Вы решили использовать светорегулятор вместе со светодиодными лампами и лентами, покупать нужно устройство особой конструкции, которая сможет работать с таким источником света. Лидирующие производители: Schneider, Legrand, ABB и Viko имеют в своем ассортименте такие модели, однако их стоимость на порядок выше.
- Мощность диммера должна превышать суммарную мощность светильников, которые он будет обслуживать. К примеру, если вы решили использовать 3 лампочки по 100 Ватт, мощность устройства должна быть выбрана с запасом – не менее 500 Ватт. Если суммарная мощность светильников больше 1 кВт, в этом случае нужно дополнительно подключить усилитель, с которым возможно обслуживание системы освещения мощностью до 1,8 кВт.
- Запрещается одновременно подсоединять нагрузки емкостного и индуктивного характера к светорегулятору.
Вот и все требования, которых Вы должны придерживаться для того, чтобы правильно подключить диммер своими руками!
Как правильно использовать
Безопасность и успешность работы регулятора зависят от соблюдения нескольких правил:
- соблюдение температурного режима. Прибор может сильно нагреваться, особенно если окружающая среда тоже имеет высокую температуру. В этом случае стоит позаботиться о наличии охлаждения;
- подбирать регулятор нужно с учетом всех параметров сети;
- сила тока в цепи не должна равняться максимально допустимой для регулятора;
- при самостоятельной сборке необходимо обеспечить прибору защиту от поражений током, заключив его в корпус.
Способ 1
На примере рис. 1, рис. 2 представлены варианты схемы электронного реле, где отключение тиристора в источнике постоянного тока производиться через управляющий электрод.
Анод тиристора подключен в цепь положительного смещения базы ключа транзистора. Рабочий ток через тиристор близкий току удерживания, что облегчает его отключение по управляющей цепи незначительными импульсами обратного напряжения при переходе через нулевое значение.
Рис. 1. Электронное реле с транзисторным ключом р-п-р проводимости (способ 1).
Рис. 2. Электронное реле с транзисторным ключом п-р-п проводимости.